Learn R Programming

tectonicr (version 0.4.8)

sample_dispersion: Sample circular dispersion

Description

Alternative versions of variance, dispersion a distance (Mardia and Jupp, 1999; pp. 19-20). These alternative dispersion has a minimum at the sample median.

Usage

sample_circular_variance(x, w = NULL, axial = TRUE)

sample_circular_distance(x, y, axial = TRUE, na.rm = TRUE)

sample_circular_dispersion( x, y = NULL, w = NULL, w.y = NULL, axial = TRUE, na.rm = TRUE )

Arguments

x, y

vectors of numeric values in degrees. length(y) is either 1 or length(x)

w, w.y

(optional) Weights. A vector of positive numbers and of the same length as x. w.y is the (optional) weight of y.

axial

logical. Whether the data are axial, i.e. pi-periodical (TRUE, the default) or directional, i.e. \(2 \pi\)-periodical (FALSE).

na.rm

logical. Whether NA values in x should be stripped before the computation proceeds.

References

N.I. Fisher (1993) Statistical Analysis of Circular Data, Cambridge University Press.

Mardia, K.V., and Jupp, P.E (1999). Directional Statistics, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, USA. tools:::Rd_expr_doi("10.1002/9780470316979")

Examples

Run this code
a <- c(0, 2, 359, 6, 354)
sample_circular_distance(a, 10) # distance to single value

b <- a + 90
sample_circular_distance(a, b) # distance to multiple values

data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
sample_circular_variance(sa.por$azi.PoR)
sample_circular_dispersion(sa.por$azi.PoR, y = 135)
sample_circular_dispersion(sa.por$azi.PoR, y = 135, w = weighting(san_andreas$unc))

Run the code above in your browser using DataLab