# example using 'syrah' data set
low1 <- t(syrah[seq(3, 1026, by = 6), -c(1:4)])
colnames(low1) <- 10:180
tcata.line.plot(get.smooth(low1), lwd = 2, main = "Low-ethanol wine (Sip 1)")
# example using 'ojtcata' data set
data(ojtcata)
# comparison of Orange Juice 1 vs. Other OJs (2 to 6)
oj1.v.other <- citation.counts(ojtcata, product.name = "1", product.col = 2,
attribute.col = 4, results.col = 5:25, comparison = "other")
times <- get.times(colnames(ojtcata)[-c(1:4)])
attributes <- unique(ojtcata$attribute)
palettes <- make.palettes(length(attributes))
# plot results
tcata.line.plot(oj1.v.other$P1, n = oj1.v.other$Pn,
attributes = attributes, times = times,
line.col = palettes$pal, reference = oj1.v.other$ref, ref.lty = 3,
declutter = oj1.v.other$declutter, highlight = TRUE, highlight.lwd = 4,
highlight.col = palettes$pal.light,
height = 7, width = 11, legend.cex = 0.7, main = "Product 1 vs. Other Products")
# example showing plots similar to those in Meyners & Castura (2018)
# comparison of Orange Juice 1 vs. All OJs (1 to 6)
oj1.v.all <- citation.counts(ojtcata, product.name = "1", product.col = 2,
attribute.col = 4, results.col = 5:25, comparison = "average")
lty.mat <- matrix(1,nrow=6,ncol=21)
lty.mat[, 1:3] <- c(rep(NA,8),rep(c(1,NA),4), 1, 1)
lty.mat[2, 9:12] <- lty.mat[5, 8] <- 3
tcata.line.plot(oj1.v.all$P1, n = oj1.v.all$Pn, attributes = attributes,
times = times, line.col = palettes$pal, lty = lty.mat, lwd = 2,
height = 7, width = 11, legend.cex = 0.7, main = "Product 1 vs. All Products")
Run the code above in your browser using DataLab