EM Algorithms for Template ICA Models
EM_templateICA.spatial(
template_mean,
template_var,
meshes,
BOLD,
theta0,
C_diag,
H,
Hinv,
maxiter = 100,
usePar = FALSE,
epsilon = 0.001,
reduce_dim = TRUE,
verbose = FALSE
)EM_templateICA.independent(
template_mean,
template_var,
BOLD,
theta0,
C_diag,
H,
Hinv,
maxiter = 100,
epsilon = 0.001,
reduce_dim = FALSE,
usePar = FALSE,
verbose
)
A list: theta (list of final parameter estimates), subICmean
(estimates of subject-level ICs), subICvar (variance of subject-level ICs,
for non-spatial model) or subjICcov (covariance matrix of subject-level ICs,
for spatial model -- note that only diagonal and values for neighbors are
computed), and success (flag indicating convergence (TRUE) or not
(FALSE))
(\(V \times Q\) matrix) mean maps for each IC in template, where \(Q\) is the number of ICs, \(V=nvox\) is the number of data locations.
(\(V \times Q\) matrix) between-subject variance maps for each IC in template
NULL for spatial independence model, otherwise a list of
objects of class "templateICA_mesh" containing the triangular mesh (see
make_mesh) for each brain structure.
(\(V \times Q\) matrix) dimension-reduced fMRI data
(list) initial guess at parameter values: A (\(QxQ\) mixing matrix), nu0_sq (residual variance from first level) and (for spatial model only) kappa (SPDE smoothness parameter for each IC map)
(\(Qx1\)) diagonal elements of matrix proportional to residual variance.
For dimension reduction of the spatial template ICA model, which assumes that all IC's have the same smoothness parameter, \(\kappa\)
Maximum number of EM iterations. Default: 100.
Parallelize the computation? Default: FALSE. Can be the
number of cores to use or TRUE, which will use the number available minus two.
Not yet implemented for spatial template ICA.
Smallest proportion change between iterations. Default: 0.001.
Reduce the temporal dimension of the data using PCA?
Default: TRUE for the spatial EM algorithm, and FALSE for the
independent EM algorithm.
If TRUE, display progress of algorithm. Default: FALSE.
EM_templateICA.spatial implements the expectation-maximization
(EM) algorithm described in Mejia et al. (2019+) for estimating the
subject-level ICs and unknown parameters in the template ICA model with
spatial priors on subject effects.
In both models, if original fMRI timeseries has covariance \(\sigma^2 I_T\), the prewhitened timeseries achieved by premultiplying by (\(QxT\)) matrix \(H\) from PCA has diagonal covariance \(\sigma^2HH'\), so C_diag is \(diag(HH')\).