Parameter Estimates in EM Algorithm for Template ICA Model
UpdateTheta_templateICA.spatial(
template_mean,
template_var,
meshes,
BOLD,
theta,
C_diag,
H,
Hinv,
s0_vec,
D,
Dinv_s0,
verbose = FALSE,
return_MAP = FALSE,
update = c("all", "kappa", "A")
)UpdateTheta_templateICA.independent(
template_mean,
template_var,
BOLD,
theta,
C_diag,
H,
Hinv,
update_nu0sq = TRUE,
return_MAP = FALSE,
verbose = TRUE
)
An updated list of parameter estimates, theta, OR if
return_MAP=TRUE, the posterior mean and precision of the latent fields
(\(V \times Q\) matrix) mean maps for each IC in template
(\(V \times Q\) matrix) between-subject variance maps for each IC in template
NULL for spatial independence model, otherwise a list of
objects of class "templateICA_mesh" containing the triangular mesh (see
make_mesh) for each brain structure.
(\(V \times Q\) matrix) dimension-reduced fMRI data
(list) current parameter estimates
\((Qx1)\) diagonal elements of residual covariance after dimension reduction
For dimension reduction
Vectorized template means
Sparse diagonal matrix of template standard deviations
The inverse of D times s0_vec
If TRUE, display progress of algorithm. Default: FALSE.
If TRUE. return the posterior mean and precision of
the latent fields instead of the parameter estimates. Default: FALSE.
Which parameters to update. Either "all", "A" or "kappa".
For non-spatial model: updating nu0sq is recommended
if dimension reduction was not performed, and is not recommended if it was.