VB Algorithm for FC Template ICA Model
VB_FCtemplateICA(
template_mean,
template_var,
template_FC,
method_FC = c("VB1", "VB2"),
nsamp_u = 10000,
CI_FC = 0.95,
return_FC_samp = FALSE,
prior_params = c(0.001, 0.001),
BOLD,
TR = NULL,
A0,
S0,
S0_var,
maxiter = 100,
miniter = 3,
epsilon = 0.001,
usePar = TRUE,
PW = FALSE,
verbose = FALSE
)A list of computed values, including the final parameter estimates.
(\(V \times Q\) matrix) mean maps for each IC in the template, where \(Q\) is the number of ICs, and \(V=nvox\) is the number of data locations.
(\(V \times Q\) matrix) between-subject variance maps for each IC in the template.
(list) Parameters of functional connectivity template.
Variational Bayes (VB) method for FC template ICA model:
"VB1" (default) uses a conjugate Inverse-Wishart prior for the cor(A);
"VB2" draws samples from p(cor(A)) to emulate the population distribution
using a combination of Cholesky, SVD, and random pivoting.
For VB1, the number of samples to generate from u ~ Gamma, where
A is Gaussian conditional on u. Default: 10000.
Level of posterior credible interval to construct for each FC element.
Default: 0.95.
Should the FC samples (\(QxQxK\)) be returned, where K is the number of posterior samples generated? May be a large object. For VB1, K is equal to nsamp_u. For VB2, K is equal to the number of samples from p(G) contained in template_FC.
Alpha and beta parameters of IG prior on \(\tau^2\)
(error variance). Default: 0.001 for both.
(\(V \times T\) matrix) preprocessed fMRI data.
Initial guesses at latent variables: A (\(TxQ\)
mixing matrix), S (\(QxV\) matrix of spatial ICs), and
variance matrix S0_var.
Maximum number of VB iterations. Default: 100.
Minimum number of VB iterations. Default: 3.
Smallest proportion change in parameter estimates between iterations.
Default: 0.001.
Parallelize the computation? Default: FALSE. Can be the
number of cores to use or TRUE, which will use the number available minus two.
Prewhiten to account for residual autocorrelation?
If TRUE, display progress of algorithm. Default: FALSE.