# Take a subset of the samples so the example runs faster
# Here we are taking samples from the odd months
sub_sample <- rownames(meta_table)[(meta_table$day_of_life%/%12)%%2==1]
count_table_sub <- count_table[sub_sample,]
processed_table_sub <- processed_table[sub_sample,]
meta_table_sub <- meta_table[sub_sample,]
datlist <- format_tempted(count_table_sub,
meta_table_sub$day_of_life,
meta_table_sub$studyid,
pseudo=0.5,
transform="clr")
mean_svd <- svd_centralize(datlist, r=1)
res_tempted <- tempted(mean_svd$datlist, r=2, smooth=1e-5)
contrast <- matrix(c(1/2,1), 2, 1)
res_aggregate <- aggregate_feature(res_tempted,
mean_svd,
datlist,
pct=1,
contrast=contrast)
# plot the aggregated features
# \donttest{
group <- unique(meta_table[, c("studyid", "delivery")])
plot_metafeature(res_aggregate$metafeature_aggregate, group, bws=30)
# }
Run the code above in your browser using DataLab