
A tensor can be seen as a linear mapping of a tensor to a tensor. This function computes its Cholesky decomposition.
chol.tensor(X,i,j,...,name="lambda")
a tensor
The tensor to be decomposed
The image dimensions of the linear mapping
The coimage dimensions of the linear mapping
The name of the eigenspace dimension. This is the
dimension created by the decompositions, in which the eigenvectors
are
for generic use only
K. Gerald van den Boogaart
A tensor can be seen as a linear mapping of a tensor to a tensor. Let
denote
Computes for a tensor
to.tensor
, svd.tensor
A <- to.tensor(rnorm(15),c(a=3,b=5))
AAt <- einstein.tensor(A,mark(A,i="a"))
ch <- chol.tensor(AAt,"a","a'",name="lambda")
#names(ch)[1]<-"lambda"
einstein.tensor(ch,mark(ch,i="a")) # AAt
A <- to.tensor(rnorm(30),c(a=3,b=5,c=2))
AAt <- einstein.tensor(A,mark(A,i="a"),by="c")
ch <- chol.tensor(AAt,"a","a'",name="lambda")
einstein.tensor(ch,mark(ch,i="a"),by="c") #AAt
Run the code above in your browser using DataLab