A list with the following model options:
ARDXTRUE: use elementwise ARD prior for X, resulting in sparse X's.
FALSE: use guassian prior for a dense X (default).
ARDWTRUE: use elementwise ARD prior for W, resulting in sparse W's (default).
FALSE: use guassian prior for a dense W.
ARDUTRUE: use elementwise ARD prior for U, resulting in sparse U's.
FALSE: use guassian prior for a dense U (default).
iter.burninThe number of burn-in samples (default 5000).
iter.samplingThe number of saved posterior samples (default 50).
iter.thinningThe thinning factor to use in saving posterior samples (default 10).
prior.alpha_0tThe shape parameter for residual noise (tau's) prior (default 1).
prior.beta_0tThe rate parameter for residual noise (tau's) prior (default 1).
prior.alpha_0The shape parameter for the ARD precisions (default 1e-3).
prior.beta_0The rate parameter for the ARD precisions (default 1e-3).
prior.betaW1Bernoulli prior for component activiations, prior.betaW1 < prior.betaW2: sparsity inducing (default: 1).
prior.betaW2Bernoulli prior for component activation, (default: 1).
init.tauThe initial value for noise precision (default 1e3).
verboseThe verbosity level. 0=no printing, 1=moderate printing,
2=maximal printing (default 1).
checkConvergenceCheck for the convergence of the data reconstruction,
based on the Geweke diagnostic (default TRUE).