Learn R Programming

tensorBSS (version 0.3.9)

tensorBSS-package: Blind Source Separation Methods for Tensor-Valued Observations

Description

Contains several utility functions for manipulating tensor-valued data (centering, multiplication from a single mode etc.) and the implementations of the following blind source separation methods for tensor-valued data: ‘tPCA’, ‘tFOBI’, ‘tJADE’, ‘k-tJADE’, ‘tgFOBI’, ‘tgJADE’, ‘tSOBI’, ‘tNSS.SD’, ‘tNSS.JD’, ‘tNSS.TD.JD’, ‘tPP’ and ‘tTUCKER’.

Arguments

Author

Joni Virta, Christoph Koesner, Bing Li, Klaus Nordhausen, Hannu Oja and Una Radojicic

Maintainer: Joni Virta <joni.virta@outlook.com>

Details

Package:tensorBSS
Type:Package
Version:0.3.9
Date:2024-09-12
License:GPL (>= 2)

References

Virta, J., Taskinen, S. and Nordhausen, K. (2016), Applying fully tensorial ICA to fMRI data, Signal Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE, tools:::Rd_expr_doi("10.1109/SPMB.2016.7846858")

Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-valued data, Journal of Multivariate Analysis, tools:::Rd_expr_doi("10.1016/j.jmva.2017.09.008")

Virta, J. and Nordhausen, K., (2017), Blind source separation of tensor-valued time series. Signal Processing 141, 204-216, tools:::Rd_expr_doi("10.1016/j.sigpro.2017.06.008")

Virta J., Nordhausen K. (2017): Blind source separation for nonstationary tensor-valued time series, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), tools:::Rd_expr_doi("10.1109/MLSP.2017.8168122")

Virta J., Li B., Nordhausen K., Oja H. (2018): JADE for tensor-valued observations, Journal of Computational and Graphical Statistics, 27, 628 - 637, tools:::Rd_expr_doi("10.1080/10618600.2017.1407324")

Virta J., Lietzen N., Ilmonen P., Nordhausen K. (2021): Fast tensorial JADE, Scandinavian Journal of Statistics, 48, 164-187, tools:::Rd_expr_doi("10.1111/sjos.12445")

Radojicic, U., Lietzen, N., Nordhausen, K. and Virta, J. (2021): Dimension estimation in two-dimensional PCA. In S. Loncaric, T. Petkovic and D. Petrinovic (editors) "Proceedings of the 12 International Symposium on Image and Signal Processing and Analysis (ISPA 2021)", 16-22. tools:::Rd_expr_doi("10.1109/ISPA52656.2021.9552114").

Radojicic, U., Lietzen, N., Nordhausen, K. and Virta, J. (2022): Order determination for tensor-valued observations using data augmentation. <arXiv:2207.10423>.

Koesner, C, Nordhausen, K. and Virta, J. (2019), Estimating the signal tensor dimension using tensorial PCA. Manuscript.