Estimation of the reduced rank MAR(1) model, using least squares (RRLSE) or MLE (RRMLE), as determined by the value of method.
matAR.RR.est(xx, method, A1.init=NULL, A2.init=NULL,Sig1.init=NULL,Sig2.init=NULL,
k1=NULL, k2=NULL, niter=200,tol=1e-4)return a list containing the following:
A1estimator of \(A_1\), a \(d_1\) by \(d_1\) matrix.
A2estimator of \(A_2\), a \(d_2\) by \(d_2\) matrix.
loadinga list of estimated \(U_i\), \(V_i\), where we write \(A_i=U_iD_iV_i\) as the singular value decomposition (SVD) of \(A_i\), \(i = 1,2\).
Sig1only if method=MLE, when \(\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1\).
Sig2only if method=MLE, when \(\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1\).
resresiduals.
Sigsample covariance matrix of the residuals vec(\(\hat E_t\)).
cova list containing
Sigmaasymptotic covariance matrix of (vec( \(\hat A_1\)),vec(\(\hat A_2^{\top}\))).
Theta1.u, Theta1.vasymptotic covariance matrix of vec(\(\hat U_1\)), vec(\(\hat V_1\)).
Theta2.u, Theta2.vasymptotic covariance matrix of vec(\(\hat U_2\)), vec(\(\hat V_2\)).
sd.A1element-wise standard errors of \(\hat A_1\), aligned with A1.
sd.A2element-wise standard errors of \(\hat A_2\), aligned with A2.
niternumber of iterations.
BICvalue of the extended Bayesian information criterion.
\(T \times d_1 \times d_2\) matrix-valued time series, \(T\) is the length of the series.
character string, specifying the method of the estimation to be used.
"RRLSE",Least squares.
"RRMLE",MLE under a separable cov(vec(\(E_t\))).
initial value of \(A_1\). The default is the identity matrix.
initial value of \(A_2\). The default is the identity matrix.
only if method=RRMLE, initial value of \(\Sigma_1\). The default is the identity matrix.
only if method=RRMLE, initial value of \(\Sigma_2\). The default is the identity matrix.
rank of \(A_1\), a positive integer.
rank of \(A_2\), a positive integer.
maximum number of iterations if error stays above tol.
relative Frobenius norm error tolerance.
The reduced rank MAR(1) model takes the form: $$X_t = A_1 X_{t-1} A_2^{^\top} + E_t,$$ where \(A_i\) are \(d_i \times d_i\) coefficient matrices of ranks \(\mathrm{rank}(A_i) = k_i \le d_i\), \(i=1,2\). For the MLE method we also assume $$\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1$$
Reduced Rank Autoregressive Models for Matrix Time Series, by Han Xiao, Yuefeng Han, Rong Chen and Chengcheng Liu.
set.seed(333)
dim <- c(3,3)
xx <- tenAR.sim(t=500, dim, R=2, P=1, rho=0.5, cov='iid')
est <- matAR.RR.est(xx, method="RRLSE", k1=1, k2=1)
Run the code above in your browser using DataLab