tenAR.sim(t, dim, R, P, rho, cov, A = NULL, Sig = NULL)
Value
A tensor-valued time series generated by the TenAR(p) model.
Arguments
t
length of output series, a strictly positive integer.
dim
dimension of the tensor at each time.
R
Kronecker rank for each lag.
P
autoregressive order.
rho
spectral radius of coefficient matrix \(\Phi\).
cov
covariance matrix of the error term: diagonal ("iid"), separable ("mle"), random ("svd").
A
coefficient matrices. If not provided, they are randomly generated according to given dim, R, P and rho.
It is a multi-layer list, the first layer for the lag \(1 \le i \le P\), the second the term \(1 \le r \le R\), and the third the mode \(1 \le k \le K\).
See "Details" of tenAR.est.
Sig
only if cov=mle, a list of initial values of \(\Sigma_1,\ldots,\Sigma_K\). The default are identity matrices.