result <- fit_mmrm(
vars = list(
response = "FEV1",
covariates = c("RACE", "SEX"),
id = "USUBJID",
arm = "ARMCD",
visit = "AVISIT"
),
data = mmrm_test_data,
cor_struct = "unstructured",
weights_emmeans = "equal"
)
as.rtable(result, type = "cov", format = "xx.x")
result_no_arm <- fit_mmrm(
vars = list(
response = "FEV1",
covariates = c("RACE", "SEX"),
id = "USUBJID",
visit = "AVISIT"
),
data = mmrm_test_data,
cor_struct = "unstructured",
weights_emmeans = "equal"
)
as.rtable(result_no_arm, type = "cov", format = "xx.x")
df <- broom::tidy(result)
df_no_arm <- broom::tidy(result_no_arm)
s_mmrm_lsmeans(df[8, ], .in_ref_col = FALSE)
s_mmrm_lsmeans_single(df_no_arm[4, ])
library(dplyr)
dat_adsl <- mmrm_test_data %>%
select(USUBJID, ARMCD) %>%
unique()
basic_table() %>%
split_cols_by("ARMCD", ref_group = result$ref_level) %>%
add_colcounts() %>%
split_rows_by("AVISIT") %>%
summarize_lsmeans(
.stats = c("n", "adj_mean_se", "adj_mean_ci", "diff_mean_se", "diff_mean_ci"),
.labels = c(adj_mean_se = "Adj. LS Mean (Std. Error)"),
.formats = c(adj_mean_se = sprintf_format("%.1f (%.2f)"))
) %>%
build_table(
df = broom::tidy(result),
alt_counts_df = dat_adsl
)
basic_table() %>%
split_rows_by("AVISIT") %>%
summarize_lsmeans(arms = FALSE) %>%
build_table(
df = broom::tidy(result_no_arm),
alt_counts_df = dat_adsl
)
Run the code above in your browser using DataLab