Count the number of unique and non-unique patients in a column (variable).
analyze_num_patients(
lyt,
vars,
required = NULL,
count_by = NULL,
unique_count_suffix = TRUE,
na_str = default_na_str(),
nested = TRUE,
.stats = NULL,
.formats = NULL,
.labels = c(unique = "Number of patients with at least one event", nonunique =
"Number of events"),
show_labels = c("default", "visible", "hidden"),
.indent_mods = 0L,
riskdiff = FALSE,
...
)summarize_num_patients(
lyt,
var,
required = NULL,
count_by = NULL,
unique_count_suffix = TRUE,
na_str = default_na_str(),
.stats = NULL,
.formats = NULL,
.labels = c(unique = "Number of patients with at least one event", nonunique =
"Number of events"),
.indent_mods = 0L,
riskdiff = FALSE,
...
)
s_num_patients(
x,
labelstr,
.N_col,
count_by = NULL,
unique_count_suffix = TRUE
)
s_num_patients_content(
df,
labelstr = "",
.N_col,
.var,
required = NULL,
count_by = NULL,
unique_count_suffix = TRUE
)
analyze_num_patients()
returns a layout object suitable for passing to further layouting functions,
or to rtables::build_table()
. Adding this function to an rtable
layout will add formatted rows containing
the statistics from s_num_patients_content()
to the table layout.
summarize_num_patients()
returns a layout object suitable for passing to further layouting functions,
or to rtables::build_table()
. Adding this function to an rtable
layout will add formatted rows containing
the statistics from s_num_patients_content()
to the table layout.
s_num_patients()
returns a named list
of 3 statistics:
unique
: Vector of counts and percentages.
nonunique
: Vector of counts.
unique_count
: Counts.
s_num_patients_content()
returns the same values as s_num_patients()
.
(PreDataTableLayouts
)
layout that analyses will be added to.
(character
)
variable names for the primary analysis variable to be iterated over.
(character
or NULL
)
optional, name of a variable that is required to be non-missing.
(vector
)
optional vector of any type to be combined with x
when counting nonunique
records.
(flag
)
whether the "(n)"
suffix should be added to unique_count
labels.
Defaults to TRUE
.
(string
)
string used to replace all NA
or empty values in the output.
(flag
)
whether this layout instruction should be applied within the existing layout structure _if
possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split.
underneath analyses, which is not allowed.
(character
)
statistics to select for the table. Run get_stats("summarize_num_patients")
to see available statistics for this function.
(named character
or list
)
formats for the statistics. See Details in analyze_vars
for more
information on the "auto"
setting.
(named character
)
labels for the statistics (without indent).
(string
)
label visibility: one of "default", "visible" and "hidden".
(named integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the
unmodified default behavior. Can be negative.
(flag
)
whether a risk difference column is present. When set to TRUE
, add_riskdiff()
must be
used as split_fun
in the prior column split of the table layout, specifying which columns should be compared.
See stat_propdiff_ci()
for details on risk difference calculation.
additional arguments for the lower level functions.
(character
or factor
)
vector of patient IDs.
(string
)
label of the level of the parent split currently being summarized
(must be present as second argument in Content Row Functions). See rtables::summarize_row_groups()
for more information.
(integer(1)
)
column-wise N (column count) for the full column being analyzed that is typically
passed by rtables
.
(data.frame
)
data set containing all analysis variables.
(string
)
single variable name that is passed by rtables
when requested
by a statistics function.
analyze_num_patients()
: Layout-creating function which can take statistics function arguments
and additional format arguments. This function is a wrapper for rtables::analyze()
.
summarize_num_patients()
: Layout-creating function which can take statistics function arguments
and additional format arguments. This function is a wrapper for rtables::summarize_row_groups()
.
s_num_patients()
: Statistics function which counts the number of
unique patients, the corresponding percentage taken with respect to the
total number of patients, and the number of non-unique patients.
s_num_patients_content()
: Statistics function which counts the number of unique patients
in a column (variable), the corresponding percentage taken with respect to the total number of
patients, and the number of non-unique patients in the column.
In general, functions that starts with analyze*
are expected to
work like rtables::analyze()
, while functions that starts with summarize*
are based upon rtables::summarize_row_groups()
. The latter provides a
value for each dividing split in the row and column space, but, being it
bound to the fundamental splits, it is repeated by design in every page
when pagination is involved.
df <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA, 6, 6, 8, 9)),
ARM = c("A", "A", "A", "A", "A", "B", "B", "B", "B"),
AGE = c(10, 15, 10, 17, 8, 11, 11, 19, 17)
)
tbl <- basic_table() %>%
split_cols_by("ARM") %>%
add_colcounts() %>%
analyze_num_patients("USUBJID", .stats = c("unique")) %>%
build_table(df)
tbl
# Use the statistics function to count number of unique and nonunique patients.
s_num_patients(x = as.character(c(1, 1, 1, 2, 4, NA)), labelstr = "", .N_col = 6L)
s_num_patients(
x = as.character(c(1, 1, 1, 2, 4, NA)),
labelstr = "",
.N_col = 6L,
count_by = c(1, 1, 2, 1, 1, 1)
)
# Count number of unique and non-unique patients.
df <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA)),
EVENT = as.character(c(10, 15, 10, 17, 8))
)
s_num_patients_content(df, .N_col = 5, .var = "USUBJID")
df_by_event <- data.frame(
USUBJID = as.character(c(1, 2, 1, 4, NA)),
EVENT = c(10, 15, 10, 17, 8)
)
s_num_patients_content(df_by_event, .N_col = 5, .var = "USUBJID", count_by = "EVENT")
Run the code above in your browser using DataLab