
Last chance! 50% off unlimited learning
Sale ends in
Helper functions used in fit_coxreg_univar()
and fit_coxreg_multivar()
.
h_coxreg_univar_formulas(variables, interaction = FALSE)h_coxreg_multivar_formula(variables)
h_coxreg_univar_extract(effect, covar, data, mod, control = control_coxreg())
h_coxreg_multivar_extract(var, data, mod, control = control_coxreg())
h_coxreg_univar_formulas()
returns a character
vector coercible into formulas (e.g stats::as.formula()
).
h_coxreg_multivar_formula()
returns a string
coercible into a formula (e.g stats::as.formula()
).
h_coxreg_univar_extract()
returns a data.frame
with variables effect
, term
, term_label
, level
,
n
, hr
, lcl
, ucl
, and pval
.
h_coxreg_multivar_extract()
returns a data.frame
with variables pval
, hr
, lcl
, ucl
, level
,
n
, term
, and term_label
.
(named list
of string
)
list of additional analysis variables.
(flag
)
if TRUE
, the model includes the interaction between the studied
treatment and candidate covariate. Note that for univariate models without treatment arm, and
multivariate models, no interaction can be used so that this needs to be FALSE
.
(string
)
the treatment variable.
(string
)
the name of the covariate in the model.
(data.frame
)
the dataset containing the variables to summarize.
(coxph
)
Cox regression model fitted by survival::coxph()
.
(list
)
a list of controls as returned by control_coxreg()
.
(string
)
single variable name that is passed by rtables
when requested
by a statistics function.
h_coxreg_univar_formulas()
: Helper for Cox regression formula. Creates a list of formulas. It is used
internally by fit_coxreg_univar()
for the comparison of univariate Cox regression models.
h_coxreg_multivar_formula()
: Helper for multivariate Cox regression formula. Creates a formulas
string. It is used internally by fit_coxreg_multivar()
for the comparison of multivariate Cox
regression models. Interactions will not be included in multivariate Cox regression model.
h_coxreg_univar_extract()
: Utility function to help tabulate the result of
a univariate Cox regression model.
h_coxreg_multivar_extract()
: Tabulation of multivariate Cox regressions. Utility function to help
tabulate the result of a multivariate Cox regression model for a treatment/covariate variable.
cox_regression
# `h_coxreg_univar_formulas`
## Simple formulas.
h_coxreg_univar_formulas(
variables = list(
time = "time", event = "status", arm = "armcd", covariates = c("X", "y")
)
)
## Addition of an optional strata.
h_coxreg_univar_formulas(
variables = list(
time = "time", event = "status", arm = "armcd", covariates = c("X", "y"),
strata = "SITE"
)
)
## Inclusion of the interaction term.
h_coxreg_univar_formulas(
variables = list(
time = "time", event = "status", arm = "armcd", covariates = c("X", "y"),
strata = "SITE"
),
interaction = TRUE
)
## Only covariates fitted in separate models.
h_coxreg_univar_formulas(
variables = list(
time = "time", event = "status", covariates = c("X", "y")
)
)
# `h_coxreg_multivar_formula`
h_coxreg_multivar_formula(
variables = list(
time = "AVAL", event = "event", arm = "ARMCD", covariates = c("RACE", "AGE")
)
)
# Addition of an optional strata.
h_coxreg_multivar_formula(
variables = list(
time = "AVAL", event = "event", arm = "ARMCD", covariates = c("RACE", "AGE"),
strata = "SITE"
)
)
# Example without treatment arm.
h_coxreg_multivar_formula(
variables = list(
time = "AVAL", event = "event", covariates = c("RACE", "AGE"),
strata = "SITE"
)
)
library(survival)
dta_simple <- data.frame(
time = c(5, 5, 10, 10, 5, 5, 10, 10),
status = c(0, 0, 1, 0, 0, 1, 1, 1),
armcd = factor(LETTERS[c(1, 1, 1, 1, 2, 2, 2, 2)], levels = c("A", "B")),
var1 = c(45, 55, 65, 75, 55, 65, 85, 75),
var2 = c("F", "M", "F", "M", "F", "M", "F", "U")
)
mod <- coxph(Surv(time, status) ~ armcd + var1, data = dta_simple)
result <- h_coxreg_univar_extract(
effect = "armcd", covar = "armcd", mod = mod, data = dta_simple
)
result
mod <- coxph(Surv(time, status) ~ armcd + var1, data = dta_simple)
result <- h_coxreg_multivar_extract(
var = "var1", mod = mod, data = dta_simple
)
result
Run the code above in your browser using DataLab