## S3 method for class 'gpd':
predict(object, M = 1000, newdata = NULL, type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.05, unique. = TRUE,...)## S3 method for class 'bgpd':
predict(object, M = 1000, newdata = NULL, type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
## S3 method for class 'bootgpd':
predict(object, M = 1000, newdata = NULL, type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE, alpha = 0.050,
unique. = TRUE, ...)
## S3 method for class 'gpd':
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.05, unique. = TRUE, full.cov = FALSE,...)
## S3 method for class 'bgpd':
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
## S3 method for class 'bootgpd':
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
## S3 method for class 'lp.gpd':
print(x, digits=3,...)
## S3 method for class 'lp.bgpd':
print(x, digits=3,...)
## S3 method for class 'lp.bootgpd':
print(x, digits=3,...)
## S3 method for class 'lp.gpd':
summary(object, digits=3,...)
## S3 method for class 'lp.bgpd':
summary(object, digits=3,...)
## S3 method for class 'lp.bootgpd':
summary(object, digits=3,...)
## S3 method for class 'lp.gpd':
plot(x, main=NULL, pch=1, ptcol=2, cex=.75, linecol=4, cicol=1, polycol=15,...)
## S3 method for class 'lp.bgpd':
plot(x, type="median", ...)
## S3 method for class 'lp.bootgpd':
plot(x, type="median", ...)
gpd, bgpd or bootgpd.newdata = NULL in which case the data used in fitting the model
will be used. Column names must match those of original data matrix used for model fitting.type = "return level". When
a return level is wanted, the user can specify the associated return perdiod via the Mse.fit = FALSE and is not implemented for
predict.bgpd or predict.bootgpd.ci.fit = FALSE. For objects of class gpd, if set to TRUE
then the confidence interval is a simple symmetric confidence interval
baseM = 1000. If a vector is passed,
a list is returned, with items corresponding to the different values of the vector M.ci.fit = TRUE, a (1 - alpha)% confidence interval is returned.
Defaults to alpha = 0.050.unique. = TRUE, predictions for only the unique values of
the linear predictors are returned, rather than for every row of
newdata. Defaults to unique. = TRUE.bgpd and bootgpd methods, if all = TRUE, the
predictions are returned for every simulated parameter vector. Otherwise,
only a summary of the posterior/bootstrap distribution is returned.
Defaults to alllist
object. This is used internally and not intended for direct use.
Defaults to full.cov = FALSEbgpd and bootgpd methods, a summary function
can be passed in. If sumfun = FALSE, the default, the
summary function used returns the estimated mean and median, and quantiles
implied by alpha.lp.gpd, lp.bgpd or lp.bootgpd, to be passed to methods for these classes.M.bootgpd method,
estimates of confidence intervals are simply quantiles of the bootstrap sample. The bootgpd
method is just a wrapper for the bgpd method.