texmex
package.## S3 method for class 'gpd':
hist(x, xlab, ylab, main, ...)qqgpd(object, nsim = 1000, alpha = 0.05, xlab, ylab, main, plot = TRUE,
ylim = "auto", pch=1, col = 2, cex = 0.75, linecol = 4, intcol = 0,
polycol = 15)
ppgpd(object, nsim = 1000, alpha = 0.05, xlab, ylab, main,
pch=1, col = 2, cex = 0.75, linecol = 4, intcol = 0,
polycol = 15)
qgpd2(N, sigma = 1, xi = 1, u = 0, la = 1)
u2gpd(u, p=1, th=0, sigma, xi)
mexTransform(x, method = "mixture", divisor = "n+1", na.rm=TRUE,
margins="laplace")
fittedGPDscale(o)
fittedGPDshape(o)
revTransform(x, data, qu, th=0, sigma=1, xi=0, method="mixture")
gpdFit(y, th, X.phi, X.xi, penalty="none", start=NULL,
priorParameters = NULL, maxit = 10000, trace = 0, hessian = TRUE)
info.gpd(o, method="observed")
ConstraintsAreSatisfied(a,b,z,zpos,zneg,v)
PosGumb.Laplace.negloglik(yex, ydep, a, b, m, s, constrain, v, aLow)
PosGumb.Laplace.negProfileLogLik(yex, ydep, a, b, constrain, v, aLow)
Profile_likelihood_HT_unc(par,listr,x,silly=-10^(40))
estimate_HT(list,u,pars,params=TRUE)
Dcond(x,a,b,c,d,zi,zk)
roots(lev,a,c,b,d,Zj,Zk)
Profile_likelihood_cd_nm_joint_D_KT_neg(par,listr,x,Zestfun,...,v,silly=-10^(40))
Profile_likelihood_cd_nm_joint_D_KT(par,listr,x,Zestfun,...,v,silly=-10^(40))
profile_minmax_joint_posneg_KT (pars,listdata,u,q1=0,q2=1,...,sill=-10^(40))
initial_posneg(D,...)
estimate_HT_KPT_joint_posneg_nm(pars,x,listr,params=TRUE,...,k=3)
inv_Laplace(p)
gpdDelta(A, K)
addCov(res,X)
namesBoot2bgpd(bootobject)
plotRLgpd(M,xm,polycol,cicol,linecol,ptcol,n,xdat,pch,smooth,xlab,ylab,
main,xrange,yrange)
rFrechet(n)
rMaxAR(n,theta)
.extRemes.decluster.intervals(Z, ei)
.extRemes.decluster.runs(Z, r)
.extRemes.exi.intervals(Z)
alpha = 0.05
.mexTransform
: how to convert. When method = 'mixture'
, the upper tail of the
distribution is modelled using a generalized Pareto distribution and the remainder
is approximated using the empirical distribution.x
. Can take values margins="laplace"
or margins="gumbel"
.gpd
, migpd
or mex
, or inferred from
those functions after some preprocessing.optim
. Logical.a
. This depends on the marginal distribution under which the dependnece model is being fittted. Under Gumbel margins, the lower bound is 0 and under Laplace margins, the lower bouind is -1.yex
is the explanatory variable on which the model conditions, and ydep
is the dependent variable.gpdDelta
which is used internally to find
approximate standard errors for return levels for gpd-type objects.addCov
which is used internally to bind covariates on to rows of reported return levels or linear predictors.namesBoot2bgpd
which restructures an object of class bootgpd to resemble one of class bgpd, which can then use methods for the bgpd class.plotrl.gpd
, plot.rl.gpd
, pl
rFrechet
and rMaxAR
, the dependence parameter theta
. Takes values between 0 and 1, with 0 corresponding to perfect dependence and 1 to independence.The plotting functions are used internally by plot.gpd
.
Some of the code is based on code that appears in the ismev
package,
originally written by Stuart Coles, the evd package by Alec Stephenson and extRemes package by Eric Gilleland, Rick Katz and Greg Young.
Code to carry out estimation of H+T2004 under Laplace margins and constrained estimation was written by Yiannis Papastathopoulos, and is used here for validation purposes.