## S3 method for class 'evmOpt':
predict(object, M = 1000, newdata = NULL,
type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.05, unique. = TRUE,...)## S3 method for class 'evmSim':
predict(object, M = 1000, newdata = NULL,
type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE,
sumfun = NULL,...)
## S3 method for class 'evmBoot':
predict(object, M = 1000, newdata = NULL,
type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE,
sumfun = NULL,...)
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.050, unique. = TRUE, ...)
## S3 method for class 'evmOpt':
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.05, unique. = TRUE, full.cov = FALSE,...)
## S3 method for class 'evmSim':
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
## S3 method for class 'evmBoot':
linearPredictors(object, newdata = NULL, se.fit = FALSE,
ci.fit = FALSE, alpha = 0.050, unique. = TRUE,
all = FALSE, sumfun = NULL,...)
## S3 method for class 'lp.evmOpt':
print(x, digits=3,...)
## S3 method for class 'lp.evmSim':
print(x, digits=3,...)
## S3 method for class 'lp.evmBoot':
print(x, digits=3,...)
## S3 method for class 'lp.evmOpt':
summary(object, digits=3,...)
## S3 method for class 'lp.evmSim':
summary(object, digits=3,...)
## S3 method for class 'lp.evmBoot':
summary(object, digits=3,...)
## S3 method for class 'lp.evmOpt':
plot(x, main=NULL, pch=1, ptcol=2, cex=.75,
linecol=4, cicol=1, polycol=15,...)
## S3 method for class 'lp.evmSim':
plot(x, type="median", ...)
## S3 method for class 'lp.evmBoot':
plot(x, type="median", ...)
evmOpt
, evmSim
or evmBoot
.newdata = NULL
in which case the data used in fitting the model
will be used. Column names must match those of the original data
matrix used for model fitting.type = "return level"
. When a return level is wanted, the
user can specify the associated return period via thse.fit = FALSE
and is not implemented for
predict.evmSim
or predict.evmBoot
.ci.fit = FALSE
. For objects of class
evmOpt
, if set to TRUE
then the confidence interval is a simple symmetric confidence interval
bM = 1000
. If a vector is passed, a list is returned, with items
corresponding to the different values of the vector M
.ci.fit = TRUE
, a 100(1 - alpha)% confidence interval is returned.
Defaults to alpha = 0.050
.unique. = TRUE
, predictions for only the unique values of
the linear predictors are returned, rather than for every row of
newdata
. Defaults to unique. = TRUE
.evmSim
and evmBoot
methods, if all = TRUE
, the
predictions are returned for every simulated parameter vector. Otherwise,
only a summary of the posterior/bootstrap distribution is returned.
Defaults to a
list
object. This is used internally and not intended for direct use.
Defaults to full.cov = FALSE
evmSim
and evmBoot
methods, a summary function
can be passed in. If sumfun = FALSE
, the default, the
summary function used returns the estimated mean and median, and quantiles
implied by alpha
.lp.evmOpt
, lp.evmSim
or lp.evmBoot
, to be passed to methods for these classes.M
.evmBoot
method,
estimates of confidence intervals are simply quantiles of the bootstrap
sample. The evmBoot
method is just a wrapper for the evmSim
method.