extract(model, ...)extract.aftreg(model, include.loglik = TRUE, include.lr = TRUE,
include.nobs = TRUE, include.events = TRUE, include.trisk = TRUE,
...)
extract.betareg(model, include.precision = TRUE,
include.pseudors = TRUE, include.loglik = TRUE,
include.nobs = TRUE, ...)
extract.clm(model, include.thresholds = TRUE, include.aic = TRUE,
include.bic=TRUE, include.loglik = TRUE, include.nobs = TRUE,
...)
extract.clogit(model, include.aic = TRUE, include.rsquared = TRUE,
include.maxrs = TRUE, include.events = TRUE,
include.nobs = TRUE, include.missings = TRUE, ...)
extract.coxph(model, include.aic = TRUE, include.rsquared = TRUE,
include.maxrs=TRUE, include.events = TRUE,
include.nobs = TRUE, include.missings = TRUE,
include.zph = TRUE, ...)
extract.coxph.penal(model, include.aic = TRUE,
include.rsquared = TRUE, include.maxrs = TRUE,
include.events = TRUE, include.nobs = TRUE,
include.missings = TRUE, include.zph = TRUE, ...)
extract.dynlm(model, include.rsquared = TRUE, include.adjrs = TRUE,
include.nobs = TRUE, ...)
extract.ergm(model, include.aic = TRUE, include.bic = TRUE,
include.loglik=TRUE, ...)
extract.gam(model, include.smooth = TRUE, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.dev.expl = TRUE,
include.dispersion = TRUE, include.rsquared = TRUE,
include.gcv = TRUE, include.nobs = TRUE,
include.nsmooth = TRUE, ...)
extract.gee(model, robust = TRUE, include.dispersion = TRUE,
include.nobs = TRUE, ...)
extract.glm(model, include.aic = TRUE, include.bic = TRUE,
include.loglik = TRUE, include.deviance = TRUE,
include.nobs = TRUE, ...)
extract.glmerMod(model, include.pvalues = FALSE, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.nobs = TRUE,
include.groups = TRUE, include.variance = TRUE,
mcmc.pvalues = FALSE, mcmc.size = 5000, ...)
extract.gls(model, include.aic = TRUE, include.bic = TRUE,
include.loglik = TRUE, include.nobs = TRUE, ...)
extract.gmm(model, include.obj.fcn = TRUE,
include.overidentification = FALSE, include.nobs = TRUE, ...)
extract.hurdle(model, beside = FALSE, include.count = TRUE,
include.zero = TRUE, include.aic = TRUE, include.loglik = TRUE,
include.nobs = TRUE, ...)
extract.ivreg(model, include.rsquared = TRUE, include.adjrs = TRUE,
include.nobs = TRUE, ...)
extract.lm(model, include.rsquared = TRUE, include.adjrs = TRUE,
include.nobs = TRUE, ...)
extract.lme(model, include.aic = TRUE, include.bic = TRUE,
include.loglik = TRUE, include.nobs = TRUE, ...)
extract.lmerMod(model, include.pvalues = FALSE, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.nobs = TRUE,
include.groups = TRUE, include.variance = TRUE,
mcmc.pvalues = FALSE, mcmc.size = 5000, ...)
extract.lmrob(model, include.nobs = TRUE, ...)
extract.lnam(model, include.rsquared = TRUE, include.adjrs = TRUE,
include.aic = TRUE, include.bic = TRUE, include.loglik = TRUE,
...)
extract.lrm(model, include.pseudors = TRUE, include.lr = TRUE,
include.nobs = TRUE, ...)
extract.mer(model, include.pvalues = FALSE, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.nobs = TRUE,
include.groups = TRUE, include.variance = TRUE,
mcmc.pvalues = FALSE, mcmc.size = 5000, ...)
extract.multinom(model, include.pvalues = TRUE, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.nobs = TRUE, ...)
extract.negbin(model, include.aic = TRUE, include.bic = TRUE,
include.loglik = TRUE, include.deviance = TRUE,
include.nobs = TRUE, ...)
extract.nlmerMod(model, include.pvalues = FALSE, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.nobs = TRUE,
include.groups = TRUE, include.variance = TRUE,
mcmc.pvalues=FALSE, mcmc.size=5000, ...)
extract.phreg(model, include.loglik = TRUE, include.lr = TRUE,
include.nobs = TRUE, include.events = TRUE, include.trisk = TRUE,
...)
extract.plm(model, include.rsquared = TRUE, include.adjrs = TRUE,
include.nobs = TRUE, ...)
extract.pmg(model, include.nobs = TRUE, ...)
extract.polr(model, include.thresholds = FALSE, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.nobs = TRUE, ...)
extract.Relogit(model, include.aic = TRUE, include.bic = TRUE,
include.loglik = TRUE, include.deviance = TRUE,
include.nobs = TRUE, ...)
extract.rem.dyad(model, include.nvertices = TRUE,
include.events = TRUE, include.aic = TRUE, include.aicc = TRUE,
include.bic = TRUE, ...)
extract.rlm(model, include.nobs = TRUE, ...)
extract.rq(model, include.nobs = TRUE, include.percentile = TRUE,
...)
extract.sclm(model, include.thresholds = TRUE, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE, include.nobs = TRUE,
...)
extract.simex(model, jackknife = TRUE, include.nobs = TRUE, ...)
extract.stergm(model, beside = FALSE, include.formation = TRUE,
include.dissolution = TRUE, include.nvertices = TRUE,
include.aic = FALSE, include.bic = FALSE,
include.loglik = FALSE, ...)
extract.survreg(model, include.aic = TRUE, include.bic = TRUE,
include.loglik = TRUE, include.deviance = TRUE,
include.nobs = TRUE, ...)
extract.survreg.penal(model, include.aic = TRUE,
include.bic = TRUE, include.loglik = TRUE,
include.deviance = TRUE, include.nobs = TRUE, ...)
extract.svyglm(model, include.aic = FALSE, include.bic = FALSE,
include.loglik = FALSE, include.deviance = TRUE,
include.dispersion = TRUE, include.nobs = TRUE, ...)
extract.systemfit(model, include.rsquared = TRUE,
include.adjrs = TRUE, include.nobs = TRUE, ...)
extract.tobit(model, include.aic = TRUE, include.bic = TRUE,
include.loglik = TRUE, include.deviance = TRUE,
include.nobs = FALSE, include.censnobs = TRUE, include.wald=TRUE,
...)
extract.weibreg(model, include.loglik = TRUE, include.lr = TRUE,
include.nobs = TRUE, include.events = TRUE, include.trisk = TRUE,
...)
extract.zeroinfl(model, beside = FALSE, include.count = TRUE,
include.zero = TRUE, include.aic = TRUE, include.loglik = TRUE,
include.nobs = TRUE, ...)
gmm
objects)? More precisely, this returns E(g)var(g)^{-1}E(g)
.gmm
objects)?mcmc.pvalues
argument)?include.pvalues=TRUE
is also set. Warning: computing MCMC-based p values may take some time.include.pvalues = TRUE
and mcmc.pvalues = TRUE
are also set). Note: high values may take considerable computing time.The various extract functions can also be used directly on a statistical model to convert them into texreg objects.
texreg-package texreg extract-methods