Learn R Programming

text (version 0.9.50)

textCentralityPlot: Plot words according to cosine semantic similarity to the aggregated word embedding.

Description

Plot words according to cosine semantic similarity to the aggregated word embedding.

Usage

textCentralityPlot(
  word_data,
  min_freq_words_test = 1,
  plot_n_word_extreme = 10,
  plot_n_word_frequency = 10,
  plot_n_words_middle = 10,
  titles_color = "#61605e",
  x_axes = "central_cosine",
  title_top = "Semantic Centrality Plot",
  x_axes_label = "Semantic Centrality",
  scale_x_axes_lim = NULL,
  scale_y_axes_lim = NULL,
  word_font = NULL,
  centrality_color_codes = c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d"),
  word_size_range = c(3, 8),
  position_jitter_hight = 0,
  position_jitter_width = 0.03,
  point_size = 0.5,
  arrow_transparency = 0.1,
  points_without_words_size = 0.5,
  points_without_words_alpha = 0.5,
  legend_title = "SC",
  legend_x_axes_label = "x",
  legend_x_position = 0.02,
  legend_y_position = 0.02,
  legend_h_size = 0.2,
  legend_w_size = 0.2,
  legend_title_size = 7,
  legend_number_size = 2,
  seed = 1007
)

Arguments

word_data

Tibble from textPlotData.

min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test (default = 1).

plot_n_word_extreme

Number of words per dimension to plot with extreme Supervised Dimension Projection value. (i.e., even if not significant; duplicates are removed).

plot_n_word_frequency

Number of words to plot according to their frequency. (i.e., even if not significant).

plot_n_words_middle

Number of words to plot that are in the middle in Supervised Dimension Projection score (i.e., even if not significant; duplicates are removed).

titles_color

Color for all the titles (default: "#61605e").

x_axes

Variable to be plotted on the x-axes (default is "central_cosine").

title_top

Title (default " ").

x_axes_label

Label on the x-axes.

scale_x_axes_lim

Length of the x-axes (default: NULL, which uses c(min(word_data$central_cosine)-0.05, max(word_data$central_cosine)+0.05); change this by e.g., try c(-5, 5)).

scale_y_axes_lim

Length of the y-axes (default: NULL, which uses c(-1, 1); change e.g., by trying c(-5, 5)).

word_font

Type of font (default: NULL).

centrality_color_codes

Colors of the words selected as plot_n_word_extreme (minimum values), plot_n_words_middle, plot_n_word_extreme (maximum values) and plot_n_word_frequency; the default is c("#EAEAEA","#85DB8E", "#398CF9", "#000000"), respectively.

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).

position_jitter_hight

Jitter height (default: .0).

position_jitter_width

Jitter width (default: .03).

point_size

Size of the points indicating the words' position (default: 0.5).

arrow_transparency

Transparency of the lines between each word and point (default: 0.1).

points_without_words_size

Size of the points not linked to a word (default is to not show the point; , i.e., 0).

points_without_words_alpha

Transparency of the points that are not linked to a word (default is to not show it; i.e., 0).

legend_title

Title of the color legend (default: "(SCP)").

legend_x_axes_label

Label on the color legend (default: "(x)".

legend_x_position

Position on the x coordinates of the color legend (default: 0.02).

legend_y_position

Position on the y coordinates of the color legend (default: 0.05).

legend_h_size

Height of the color legend (default 0.15).

legend_w_size

Width of the color legend (default 0.15).

legend_title_size

Font size of the title (default = 7).

legend_number_size

Font size of the values in the legend (default = 2).

seed

Set different seed.

Value

A 1-dimensional word plot based on cosine similarity to the aggregated word embedding, as well as tibble with processed data used to plot..

See Also

see textCentrality and textProjection

Examples

Run this code
# NOT RUN {
# The test-data included in the package is called: centrality_data_harmony
names(centrality_data_harmony)
# Plot
# centrality_plot <- textCentralityPlot(
#  word_data = centrality_data_harmony,
#  min_freq_words_test = 10,
#  plot_n_word_extreme = 10,
#  plot_n_word_frequency = 10,
#  plot_n_words_middle = 10,
#  titles_color = "#61605e",
#  x_axes = "central_cosine",
#
#  title_top = "Semantic Centrality Plot",
#  x_axes_label = "Semantic Centrality",
#
#  word_font = NULL,
#  centrality_color_codes = c("#EAEAEA","#85DB8E", "#398CF9", "#000000"),
#  word_size_range = c(3, 8),
#  point_size = 0.5,
#  arrow_transparency = 0.1,
#  points_without_words_size = 0.5,
#  points_without_words_alpha = 0.5,
# )
# centrality_plot
# }

Run the code above in your browser using DataLab