topicVar(counts, theta, omega)
logit(prob)
expit(eta)topics or predict.topics functions.topics or predict.topics functions.topics or predict.topics functions.topicVar returns an array with dimensions $(K-1,K-1,n)$, where K=ncol(omega)=ncol(theta) and n = nrow(counts) = nrow(omega), filled with the posterior covariance matrix for the NEF parametrization of each row of omega. Utility logit performs the NEF transformation and expit reverses it.