topicVar(counts, theta, omega)
logit(prob)
expit(eta)
topics
or predict.topics
functions.topics
or predict.topics
functions.topics
or predict.topics
functions.topicVar
returns an array with dimensions $(K-1,K-1,n)$, where K=ncol(omega)=ncol(theta)
and n = nrow(counts) = nrow(omega)
, filled with the posterior covariance matrix for the NEF parametrization of each row of omega
. Utility logit
performs the NEF transformation and expit
reverses it.