find.CV.C: K-fold cross-validation to determine optimal tuning parameter
Description
Given a corpus, divide into K-folds and do test-train spilts averaged over
the folds.Usage
find.CV.C(corpus, labeling, banned, K, length.out, max_C = NULL,
verbose = FALSE, ...)
Arguments
K
Number of folds for K-fold cross-validation
length.out
number of values of C to examine from 0 to max_C.
max_C
upper bound for tuning parameter; if NULL, sets max_C to threshold C
...
parameters from the original textreg() function
Value
- a dataframe containing the mean/standard error of out-of-sample predictions under K-Fold Cross-validation
Details
Increments tuning parameter, performs K-fold cross-validation on each C giving a profile
of predictive power for different C.