Various converters to turn tfb- or tfd-vectors into data.frames or
matrices, or even an actual R function.
# S3 method for tf
as.data.frame(x, row.names = NULL, optional = FALSE, unnest = FALSE, ...)# S3 method for tf
as.matrix(x, arg, interpolate = FALSE, ...)
# S3 method for tf
as.function(x, ...)
for as.data.frame.tf: if unnest is FALSE (default), a
one-column data.frame with a tf-column containing x. if unnest is
TRUE, a 3-column data frame with columns id for the (unique) names of
x or a numeric identifier, arg and value, with each row containing
one function evaluation at the original arg-values.
for as.matrix.tf: a matrix with one row per function and one
column per arg.
for as.function.tf: an R function with argument arg that
evaluates x on arg and returns the list of function values
a tf object
NULL or a character vector giving the row
names for the data frame. Missing values are not allowed.
not used
if TRUE, the function will return a data.frame with the
evaluated functions.
additional arguments to be passed to or from methods.
a vector of argument values / evaluation points for x. Defaults
to tf_arg(x).
should functions be evaluated (i.e., inter-/extrapolated)
for values in arg for which no original data is available? Only relevant
for the raw data class tfd, for which it defaults to FALSE.
Basis-represented functional data tfb are always "interpolated".