Learn R Programming

⚠️There's a newer version (2.18.0) of this package.Take me there.

R interface to TensorFlow Dataset API

The TensorFlow Dataset API provides various facilities for creating scalable input pipelines for TensorFlow models, including:

  • Reading data from a variety of formats including CSV files and TFRecords files (the standard binary format for TensorFlow training data).

  • Transforming datasets in a variety of ways including mapping arbitrary functions against them.

  • Shuffling, batching, and repeating datasets over a number of epochs.

  • Streaming interface to data for reading arbitrarily large datasets.

  • Reading and transforming data are TensorFlow graph operations, so are executed in C++ and in parallel with model training.

The R interface to TensorFlow datasets provides access to the Dataset API, including high-level convenience functions for easy integration with the keras package.

For documentation on using tfdatasets, see the package website at https://tensorflow.rstudio.com/tools/tfdatasets/.

Copy Link

Version

Install

install.packages('tfdatasets')

Monthly Downloads

3,814

Version

2.0.0

License

Apache License 2.0

Issues

Pull Requests

Stars

Forks

Maintainer

Daniel Falbel

Last Published

December 13th, 2019

Functions in tfdatasets (2.0.0)

dataset_shard

Creates a dataset that includes only 1 / num_shards of this dataset.
fit.FeatureSpec

Fits a feature specification.
dataset_prefetch_to_device

A transformation that prefetches dataset values to the given device
dataset_prefetch

Creates a Dataset that prefetches elements from this dataset.
file_list_dataset

A dataset of all files matching a pattern
fixed_length_record_dataset

A dataset of fixed-length records from one or more binary files.
dataset_map

Map a function across a dataset.
dataset_interleave

Maps map_func across this dataset, and interleaves the results
delim_record_spec

Specification for reading a record from a text file with delimited values
dataset_window

Combines input elements into a dataset of windows.
layer_input_from_dataset

Creates a list of inputs from a dataset
next_batch

Tensor(s) for retreiving the next batch from a dataset
dataset_prepare

Prepare a dataset for analysis
iterator_make_initializer

Create an operation that can be run to initialize this iterator
make-iterator

Creates an iterator for enumerating the elements of this dataset.
make_csv_dataset

Reads CSV files into a batched dataset
scaler_standard

Creates an instance of a standard scaler
dataset_repeat

Repeats a dataset count times.
dense_features

Dense Features
feature_spec

Creates a feature specification.
dataset_shuffle

Randomly shuffles the elements of this dataset.
has_type

Identify the type of the variable.
selectors

Selectors
dataset_collect

Collects a dataset
dataset_map_and_batch

Fused implementation of dataset_map() and dataset_batch()
dataset_padded_batch

Combines consecutive elements of this dataset into padded batches
scaler

List of pre-made scalers
range_dataset

Creates a dataset of a step-separated range of values.
iterator_string_handle

String-valued tensor that represents this iterator
read_files

Read a dataset from a set of files
sparse_tensor_slices_dataset

Splits each rank-N tf$SparseTensor in this dataset row-wise.
sql_record_spec

A dataset consisting of the results from a SQL query
step_shared_embeddings_column

Creates shared embeddings for categorical columns
dataset_take

Creates a dataset with at most count elements from this dataset
dataset_use_spec

Transform the dataset using the provided spec.
until_out_of_range

Execute code that traverses a dataset until an out of range condition occurs
steps

Steps for feature columns specification.
dataset_shuffle_and_repeat

Shuffles and repeats a dataset returning a new permutation for each epoch.
with_dataset

Execute code that traverses a dataset
dataset_skip

Creates a dataset that skips count elements from this dataset
iterator_get_next

Get next element from iterator
output_types

Output types and shapes
input_fn.tf_dataset

Construct a tfestimators input function from a dataset
iterator_initializer

An operation that should be run to initialize this iterator.
hearts

Heart Disease Data Set
%>%

Pipe operator
text_line_dataset

A dataset comprising lines from one or more text files.
step_crossed_column

Creates crosses of categorical columns
tfrecord_dataset

A dataset comprising records from one or more TFRecord files.
step_categorical_column_with_vocabulary_list

Creates a categorical column specification
scaler_min_max

Creates an instance of a min max scaler
reexports

Objects exported from other packages
step_categorical_column_with_identity

Create a categorical column with identity
step_categorical_column_with_vocabulary_file

Creates a categorical column with vocabulary file
tensor_slices_dataset

Creates a dataset whose elements are slices of the given tensors.
sample_from_datasets

Samples elements at random from the datasets in datasets.
step_categorical_column_with_hash_bucket

Creates a categorical column with hash buckets specification
step_bucketized_column

Creates bucketized columns
tensors_dataset

Creates a dataset with a single element, comprising the given tensors.
step_remove_column

Creates a step that can remove columns
step_numeric_column

Creates a numeric column specification
step_embedding_column

Creates embeddings columns
step_indicator_column

Creates Indicator Columns
zip_datasets

Creates a dataset by zipping together the given datasets.
dataset_flat_map

Maps map_func across this dataset and flattens the result.
dataset_concatenate

Creates a dataset by concatenating given dataset with this dataset.
all_nominal

Find all nominal variables.
dataset_cache

Caches the elements in this dataset.
all_numeric

Speciy all numeric variables.
dataset_decode_delim

Transform a dataset with delimted text lines into a dataset with named columns
dataset_filter

Filter a dataset by a predicate
as_tf_dataset

Add the tf_dataset class to a dataset
dataset_batch

Combines consecutive elements of this dataset into batches.