Simply returns a (trainable) variable, regardless of input.
This layer implements the mathematical function f(x) = c
where c
is a
constant, i.e., unchanged for all x
. Like other Keras layers, the constant
is trainable
. This layer can also be interpretted as the special case of
layer_dense()
when the kernel
is forced to be the zero matrix
(tf$zeros
).
layer_variable(
object,
shape,
dtype = NULL,
activation = NULL,
initializer = "zeros",
regularizer = NULL,
constraint = NULL,
...
)
Model or layer object
integer or integer vector specifying the shape of the output of this layer.
TensorFlow dtype
of the variable created by this layer.
An activation function. See keras::layer_dense
. Default: NULL
.
Initializer for the constant
vector.
Regularizer function applied to the constant
vector.
Constraint function applied to the constant
vector.
Additional keyword arguments passed to the keras::layer_dense
constructed by this layer.
a Keras layer
Other layers:
layer_autoregressive()
,
layer_conv_1d_flipout()
,
layer_conv_1d_reparameterization()
,
layer_conv_2d_flipout()
,
layer_conv_2d_reparameterization()
,
layer_conv_3d_flipout()
,
layer_conv_3d_reparameterization()
,
layer_dense_flipout()
,
layer_dense_local_reparameterization()
,
layer_dense_reparameterization()
,
layer_dense_variational()