The Poisson distribution is parameterized by an event rate parameter.
tfd_poisson(
rate = NULL,
log_rate = NULL,
interpolate_nondiscrete = TRUE,
validate_args = FALSE,
allow_nan_stats = TRUE,
name = "Poisson"
)Floating point tensor, the rate parameter. rate must be positive.
Must specify exactly one of rate and log_rate.
Floating point tensor, the log of the rate parameter.
Must specify exactly one of rate and log_rate.
Logical. When FALSE,
log_prob returns -inf (and prob returns 0) for non-integer
inputs. When TRUE, log_prob evaluates the continuous function
k * log_rate - lgamma(k+1) - rate, which matches the Poisson pmf
at integer arguments k (note that this function is not itself
a normalized probability log-density). Default value: TRUE.
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE.
Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined.
name prefixed to Ops created by this class.
a distribution instance.
Mathematical Details
The probability mass function (pmf) is,
pmf(k; lambda, k >= 0) = (lambda^k / k!) / Z Z = exp(lambda).
where rate = lambda and Z is the normalizing constant.
For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().
Other distributions:
tfd_autoregressive(),
tfd_batch_reshape(),
tfd_bates(),
tfd_bernoulli(),
tfd_beta_binomial(),
tfd_beta(),
tfd_binomial(),
tfd_categorical(),
tfd_cauchy(),
tfd_chi2(),
tfd_chi(),
tfd_cholesky_lkj(),
tfd_continuous_bernoulli(),
tfd_deterministic(),
tfd_dirichlet_multinomial(),
tfd_dirichlet(),
tfd_empirical(),
tfd_exp_gamma(),
tfd_exp_inverse_gamma(),
tfd_exponential(),
tfd_gamma_gamma(),
tfd_gamma(),
tfd_gaussian_process_regression_model(),
tfd_gaussian_process(),
tfd_generalized_normal(),
tfd_geometric(),
tfd_gumbel(),
tfd_half_cauchy(),
tfd_half_normal(),
tfd_hidden_markov_model(),
tfd_horseshoe(),
tfd_independent(),
tfd_inverse_gamma(),
tfd_inverse_gaussian(),
tfd_johnson_s_u(),
tfd_joint_distribution_named_auto_batched(),
tfd_joint_distribution_named(),
tfd_joint_distribution_sequential_auto_batched(),
tfd_joint_distribution_sequential(),
tfd_kumaraswamy(),
tfd_laplace(),
tfd_linear_gaussian_state_space_model(),
tfd_lkj(),
tfd_log_logistic(),
tfd_log_normal(),
tfd_logistic(),
tfd_mixture_same_family(),
tfd_mixture(),
tfd_multinomial(),
tfd_multivariate_normal_diag_plus_low_rank(),
tfd_multivariate_normal_diag(),
tfd_multivariate_normal_full_covariance(),
tfd_multivariate_normal_linear_operator(),
tfd_multivariate_normal_tri_l(),
tfd_multivariate_student_t_linear_operator(),
tfd_negative_binomial(),
tfd_normal(),
tfd_one_hot_categorical(),
tfd_pareto(),
tfd_pixel_cnn(),
tfd_poisson_log_normal_quadrature_compound(),
tfd_power_spherical(),
tfd_probit_bernoulli(),
tfd_quantized(),
tfd_relaxed_bernoulli(),
tfd_relaxed_one_hot_categorical(),
tfd_sample_distribution(),
tfd_sinh_arcsinh(),
tfd_skellam(),
tfd_spherical_uniform(),
tfd_student_t_process(),
tfd_student_t(),
tfd_transformed_distribution(),
tfd_triangular(),
tfd_truncated_cauchy(),
tfd_truncated_normal(),
tfd_uniform(),
tfd_variational_gaussian_process(),
tfd_vector_diffeomixture(),
tfd_vector_exponential_diag(),
tfd_vector_exponential_linear_operator(),
tfd_vector_laplace_diag(),
tfd_vector_laplace_linear_operator(),
tfd_vector_sinh_arcsinh_diag(),
tfd_von_mises_fisher(),
tfd_von_mises(),
tfd_weibull(),
tfd_wishart_linear_operator(),
tfd_wishart_tri_l(),
tfd_wishart(),
tfd_zipf()