Keras layer enabling plumbing TFP distributions through Keras models
layer_distribution_lambda(
object,
make_distribution_fn,
convert_to_tensor_fn = tfp$distributions$Distribution$sample,
...
)
a Keras layer
What to compose the new Layer
instance with. Typically a
Sequential model or a Tensor (e.g., as returned by layer_input()
).
The return value depends on object
. If object
is:
missing or NULL
, the Layer
instance is returned.
a Sequential
model, the model with an additional layer is returned.
a Tensor, the output tensor from layer_instance(object)
is returned.
A callable that takes previous layer outputs and returns a tfd$distributions$Distribution
instance.
A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: tfd$distributions$Distribution$sample
.
Additional arguments passed to args
of keras::create_layer
.
For an example how to use in a Keras model, see layer_independent_normal()
.
Other distribution_layers:
layer_categorical_mixture_of_one_hot_categorical()
,
layer_independent_bernoulli()
,
layer_independent_logistic()
,
layer_independent_normal()
,
layer_independent_poisson()
,
layer_kl_divergence_add_loss()
,
layer_kl_divergence_regularizer()
,
layer_mixture_logistic()
,
layer_mixture_normal()
,
layer_mixture_same_family()
,
layer_multivariate_normal_tri_l()
,
layer_one_hot_categorical()