An Independent-Bernoulli Keras layer from prod(event_shape) params
layer_independent_bernoulli(
object,
event_shape,
convert_to_tensor_fn = tfp$distributions$Distribution$sample,
sample_dtype = NULL,
validate_args = FALSE,
...
)
a Keras layer
What to compose the new Layer
instance with. Typically a
Sequential model or a Tensor (e.g., as returned by layer_input()
).
The return value depends on object
. If object
is:
missing or NULL
, the Layer
instance is returned.
a Sequential
model, the model with an additional layer is returned.
a Tensor, the output tensor from layer_instance(object)
is returned.
Scalar integer representing the size of single draw from this distribution.
A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: tfd$distributions$Distribution$sample
.
dtype of samples produced by this distribution. Default value: NULL (i.e., previous layer's dtype).
Logical, default FALSE. When TRUE distribution parameters are checked
for validity despite possibly degrading runtime performance. When FALSE invalid inputs may
silently render incorrect outputs. Default value: FALSE.
@param ... Additional arguments passed to args
of keras::create_layer
.
Additional arguments passed to args
of keras::create_layer
.
For an example how to use in a Keras model, see layer_independent_normal()
.
Other distribution_layers:
layer_categorical_mixture_of_one_hot_categorical()
,
layer_distribution_lambda()
,
layer_independent_logistic()
,
layer_independent_normal()
,
layer_independent_poisson()
,
layer_kl_divergence_add_loss()
,
layer_kl_divergence_regularizer()
,
layer_mixture_logistic()
,
layer_mixture_normal()
,
layer_mixture_same_family()
,
layer_multivariate_normal_tri_l()
,
layer_one_hot_categorical()