A mixture distribution Keras layer, with independent logistic components.
layer_mixture_logistic(
object,
num_components,
event_shape = list(),
convert_to_tensor_fn = tfp$distributions$Distribution$sample,
validate_args = FALSE,
...
)
a Keras layer
What to compose the new Layer
instance with. Typically a
Sequential model or a Tensor (e.g., as returned by layer_input()
).
The return value depends on object
. If object
is:
missing or NULL
, the Layer
instance is returned.
a Sequential
model, the model with an additional layer is returned.
a Tensor, the output tensor from layer_instance(object)
is returned.
Number of component distributions in the mixture distribution.
integer vector Tensor
representing the shape of single
draw from this distribution.
A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: tfd$distributions$Distribution$sample
.
Logical, default FALSE. When TRUE distribution parameters are checked
for validity despite possibly degrading runtime performance. When FALSE invalid inputs may
silently render incorrect outputs. Default value: FALSE.
@param ... Additional arguments passed to args
of keras::create_layer
.
Additional arguments passed to args
of keras::create_layer
.
For an example how to use in a Keras model, see layer_independent_normal()
.
Other distribution_layers:
layer_categorical_mixture_of_one_hot_categorical()
,
layer_distribution_lambda()
,
layer_independent_bernoulli()
,
layer_independent_logistic()
,
layer_independent_normal()
,
layer_independent_poisson()
,
layer_kl_divergence_add_loss()
,
layer_kl_divergence_regularizer()
,
layer_mixture_normal()
,
layer_mixture_same_family()
,
layer_multivariate_normal_tri_l()
,
layer_one_hot_categorical()