[-2, 2]
distribution in unconstrained space.Initialize from a uniform [-2, 2]
distribution in unconstrained space.
sts_sample_uniform_initial_state(
parameter,
return_constrained = TRUE,
init_sample_shape = list(),
seed = NULL
)
uniform_initializer Tensor
of shape
concat([init_sample_shape, parameter.prior.batch_shape, transformed_event_shape])
, where
transformed_event_shape
is parameter.prior.event_shape
, if
return_constrained=TRUE
, and otherwise it is
parameter$bijector$inverse_event_shape(parameter$prior$event_shape)
.
sts$Parameter
named tuple instance.
if TRUE
, re-applies the constraining bijector
to return initializations in the original domain. Otherwise, returns
initializations in the unconstrained space.
Default value: TRUE
.
sample_shape
of the sampled initializations.
Default value: list()
.
integer to seed the random number generator.
Other sts-functions:
sts_build_factored_surrogate_posterior()
,
sts_build_factored_variational_loss()
,
sts_decompose_by_component()
,
sts_decompose_forecast_by_component()
,
sts_fit_with_hmc()
,
sts_forecast()
,
sts_one_step_predictive()