event_shape
of a Tensor
.The semantics of bijector_pad
generally follow that of tf$pad()
except that bijector_pad
's paddings
argument applies to the rightmost
dimensions. Additionally, the new argument axis
enables overriding the
dimensions to which paddings
is applied. Like paddings
, the axis
argument is also relative to the rightmost dimension and must therefore be
negative.
The argument paddings
is a vector of integer
pairs each representing the
number of left and/or right constant_values
to pad to the corresponding
righmost dimensions. That is, unless axis
is specified, specifiying
kdifferent
paddingsmeans the rightmost
kdimensions will be "grown" by the sum of the respective
paddingsrow. When
axisis specified, it indicates the dimension to which the corresponding
paddingselement is applied. By default
axisis
NULLwhich means it is logically equivalent to
range(start=-len(paddings), limit=0)`, i.e., the rightmost dimensions.
tfb_pad(
paddings = list(c(0, 1)),
mode = "CONSTANT",
constant_values = 0,
axis = NULL,
validate_args = FALSE,
name = NULL
)
a bijector instance.
A vector-shaped Tensor
of integer
pairs representing the number
of elements to pad on the left and right, respectively.
Default value: list(reticulate::tuple(0L, 1L))
.
One of 'CONSTANT'
, 'REFLECT'
, or 'SYMMETRIC'
(case-insensitive). For more details, see tf$pad
.
In "CONSTANT" mode, the scalar pad value to use. Must be
same type as tensor
. For more details, see tf$pad
.
The dimensions for which paddings
are applied. Must be 1:1 with
paddings
or NULL
.
Default value: NULL
(i.e., tf$range(start = -length(paddings), limit = 0)
).
Logical, default FALSE. Whether to validate input with asserts. If validate_args is FALSE, and the inputs are invalid, correct behavior is not guaranteed.
name prefixed to Ops created by this class.
For usage examples see tfb_forward()
, tfb_inverse()
, tfb_inverse_log_det_jacobian()
.
Other bijectors:
tfb_absolute_value()
,
tfb_affine_linear_operator()
,
tfb_affine_scalar()
,
tfb_affine()
,
tfb_ascending()
,
tfb_batch_normalization()
,
tfb_blockwise()
,
tfb_chain()
,
tfb_cholesky_outer_product()
,
tfb_cholesky_to_inv_cholesky()
,
tfb_correlation_cholesky()
,
tfb_cumsum()
,
tfb_discrete_cosine_transform()
,
tfb_expm1()
,
tfb_exp()
,
tfb_ffjord()
,
tfb_fill_scale_tri_l()
,
tfb_fill_triangular()
,
tfb_glow()
,
tfb_gompertz_cdf()
,
tfb_gumbel_cdf()
,
tfb_gumbel()
,
tfb_identity()
,
tfb_inline()
,
tfb_invert()
,
tfb_iterated_sigmoid_centered()
,
tfb_kumaraswamy_cdf()
,
tfb_kumaraswamy()
,
tfb_lambert_w_tail()
,
tfb_masked_autoregressive_default_template()
,
tfb_masked_autoregressive_flow()
,
tfb_masked_dense()
,
tfb_matrix_inverse_tri_l()
,
tfb_matvec_lu()
,
tfb_normal_cdf()
,
tfb_ordered()
,
tfb_permute()
,
tfb_power_transform()
,
tfb_rational_quadratic_spline()
,
tfb_rayleigh_cdf()
,
tfb_real_nvp_default_template()
,
tfb_real_nvp()
,
tfb_reciprocal()
,
tfb_reshape()
,
tfb_scale_matvec_diag()
,
tfb_scale_matvec_linear_operator()
,
tfb_scale_matvec_lu()
,
tfb_scale_matvec_tri_l()
,
tfb_scale_tri_l()
,
tfb_scale()
,
tfb_shifted_gompertz_cdf()
,
tfb_shift()
,
tfb_sigmoid()
,
tfb_sinh_arcsinh()
,
tfb_sinh()
,
tfb_softmax_centered()
,
tfb_softplus()
,
tfb_softsign()
,
tfb_split()
,
tfb_square()
,
tfb_tanh()
,
tfb_transform_diagonal()
,
tfb_transpose()
,
tfb_weibull_cdf()
,
tfb_weibull()