powered by
cdf(x) := P[X <= x]
Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x]
tfd_cdf(distribution, value, ...)
a Tensor of shape sample_shape(x) + self$batch_shape with values of type self$dtype.
sample_shape(x) + self$batch_shape
self$dtype
The distribution being used.
float or double Tensor.
Additional parameters passed to Python.
Other distribution_methods: tfd_covariance(), tfd_cross_entropy(), tfd_entropy(), tfd_kl_divergence(), tfd_log_cdf(), tfd_log_prob(), tfd_log_survival_function(), tfd_mean(), tfd_mode(), tfd_prob(), tfd_quantile(), tfd_sample(), tfd_stddev(), tfd_survival_function(), tfd_variance()
tfd_covariance()
tfd_cross_entropy()
tfd_entropy()
tfd_kl_divergence()
tfd_log_cdf()
tfd_log_prob()
tfd_log_survival_function()
tfd_mean()
tfd_mode()
tfd_prob()
tfd_quantile()
tfd_sample()
tfd_stddev()
tfd_survival_function()
tfd_variance()
# \donttest{ d <- tfd_normal(loc = c(1, 2), scale = c(1, 0.5)) x <- d %>% tfd_sample() d %>% tfd_cdf(x) # }
Run the code above in your browser using DataLab