Learn R Programming

tfprobability (version 0.15.1)

tfd_log_survival_function: Log survival function.

Description

Given random variable X, the survival function is defined: tfd_log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]

Usage

tfd_log_survival_function(distribution, value, ...)

Value

a Tensor of shape sample_shape(x) + self$batch_shape with values of type self$dtype.

Arguments

distribution

The distribution being used.

value

float or double Tensor.

...

Additional parameters passed to Python.

Details

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

See Also

Other distribution_methods: tfd_cdf(), tfd_covariance(), tfd_cross_entropy(), tfd_entropy(), tfd_kl_divergence(), tfd_log_cdf(), tfd_log_prob(), tfd_mean(), tfd_mode(), tfd_prob(), tfd_quantile(), tfd_sample(), tfd_stddev(), tfd_survival_function(), tfd_variance()

Examples

Run this code
# \donttest{
  d <- tfd_normal(loc = c(1, 2), scale = c(1, 0.5))
  x <- d %>% tfd_sample()
  d %>% tfd_log_survival_function(x)
# }

Run the code above in your browser using DataLab