powered by
Given random variable X, the survival function is defined: tfd_log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]
tfd_log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]
tfd_log_survival_function(distribution, value, ...)
a Tensor of shape sample_shape(x) + self$batch_shape with values of type self$dtype.
sample_shape(x) + self$batch_shape
self$dtype
The distribution being used.
float or double Tensor.
Additional parameters passed to Python.
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.
Other distribution_methods: tfd_cdf(), tfd_covariance(), tfd_cross_entropy(), tfd_entropy(), tfd_kl_divergence(), tfd_log_cdf(), tfd_log_prob(), tfd_mean(), tfd_mode(), tfd_prob(), tfd_quantile(), tfd_sample(), tfd_stddev(), tfd_survival_function(), tfd_variance()
tfd_cdf()
tfd_covariance()
tfd_cross_entropy()
tfd_entropy()
tfd_kl_divergence()
tfd_log_cdf()
tfd_log_prob()
tfd_mean()
tfd_mode()
tfd_prob()
tfd_quantile()
tfd_sample()
tfd_stddev()
tfd_survival_function()
tfd_variance()
# \donttest{ d <- tfd_normal(loc = c(1, 2), scale = c(1, 0.5)) x <- d %>% tfd_sample() d %>% tfd_log_survival_function(x) # }
Run the code above in your browser using DataLab