d-variate OneHotCategorical Keras layer from d params.Typical choices for convert_to_tensor_fn include:
tfp$distributions$Distribution$sample
tfp$distributions$Distribution$mean
tfp$distributions$Distribution$mode
tfp$distributions$OneHotCategorical$logits
layer_one_hot_categorical(
object,
event_size,
convert_to_tensor_fn = tfp$distributions$Distribution$sample,
sample_dtype = NULL,
validate_args = FALSE,
...
)a Keras layer
What to compose the new Layer instance with. Typically a
Sequential model or a Tensor (e.g., as returned by layer_input()).
The return value depends on object. If object is:
missing or NULL, the Layer instance is returned.
a Sequential model, the model with an additional layer is returned.
a Tensor, the output tensor from layer_instance(object) is returned.
Scalar integer representing the size of single draw from this distribution.
A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: tfd$distributions$Distribution$sample.
dtype of samples produced by this distribution.
Default value: NULL (i.e., previous layer's dtype).
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE.
Additional arguments passed to args of keras::create_layer.
For an example how to use in a Keras model, see layer_independent_normal().
Other distribution_layers:
layer_categorical_mixture_of_one_hot_categorical(),
layer_distribution_lambda(),
layer_independent_bernoulli(),
layer_independent_logistic(),
layer_independent_normal(),
layer_independent_poisson(),
layer_kl_divergence_add_loss(),
layer_kl_divergence_regularizer(),
layer_mixture_logistic(),
layer_mixture_normal(),
layer_mixture_same_family(),
layer_multivariate_normal_tri_l()