The surrogate posterior consists of independent Normal distributions for
each parameter with trainable loc and scale, transformed using the
parameter's bijector to the appropriate support space for that parameter.
sts_build_factored_surrogate_posterior(
model,
batch_shape = list(),
seed = NULL,
name = NULL
)variational_posterior tfd_joint_distribution_named defining a trainable
surrogate posterior over model parameters. Samples from this
distribution are named lists with character parameter names as keys.
An instance of StructuralTimeSeries representing a
time-series model. This represents a joint distribution over
time-series and their parameters with batch shape [b1, ..., bN].#'
Batch shape (list, or integer) of initial
states to optimize in parallel.
Default value: list(). (i.e., just run a single optimization).
integer to seed the random number generator.
string prefixed to ops created by this function.
Default value: NULL (i.e., 'build_factored_surrogate_posterior').
Other sts-functions:
sts_build_factored_variational_loss(),
sts_decompose_by_component(),
sts_decompose_forecast_by_component(),
sts_fit_with_hmc(),
sts_forecast(),
sts_one_step_predictive(),
sts_sample_uniform_initial_state()