The dynamic linear regression model is a special case of a linear Gaussian SSM
and a generalization of typical (static) linear regression. The model
represents regression weights with a latent state which evolves via a
Gaussian random walk:
sts_dynamic_linear_regression(
observed_time_series = NULL,
design_matrix,
drift_scale_prior = NULL,
initial_weights_prior = NULL,
name = NULL
)an instance of StructuralTimeSeries.
optional float tensor of shape
batch_shape + [T, 1] (omitting the trailing unit dimension is also
supported when T > 1), specifying an observed time series.
Any priors not explicitly set will be given default values according to
the scale of the observed time series (or batch of time series). May
optionally be an instance of sts_masked_time_series, which includes
a mask tensor to specify timesteps with missing observations.
Default value: NULL.
float tensor of shape tf$concat(list(batch_shape, list(num_timesteps, num_features))).
This may also optionally be an instance of tf$linalg$LinearOperator.
instance of Distribution specifying a prior on
the drift_scale parameter. If NULL, a heuristic default prior is
constructed based on the provided observed_time_series. Default value: NULL.
instance of tfd_multivariate_normal representing
the prior distribution on the latent states (the regression weights).
Must have event shape list(num_features). If NULL, a weakly-informative
Normal(0, 10) prior is used. Default value: NULL.
the name of this component. Default value: 'DynamicLinearRegression'.
weights[t] ~ Normal(weights[t-1], drift_scale)
The latent state has dimension num_features, while the parameters
drift_scale and observation_noise_scale are each (a batch of) scalars. The
batch shape of this distribution is the broadcast batch shape of these
parameters, the initial_state_prior, and the design_matrix.
num_features is determined from the last dimension of design_matrix (equivalent to the
number of columns in the design matrix in linear regression).
For usage examples see sts_fit_with_hmc(), sts_forecast(), sts_decompose_by_component().
Other sts:
sts_additive_state_space_model(),
sts_autoregressive(),
sts_autoregressive_state_space_model(),
sts_constrained_seasonal_state_space_model(),
sts_dynamic_linear_regression_state_space_model(),
sts_linear_regression(),
sts_local_level(),
sts_local_level_state_space_model(),
sts_local_linear_trend(),
sts_local_linear_trend_state_space_model(),
sts_seasonal(),
sts_seasonal_state_space_model(),
sts_semi_local_linear_trend(),
sts_semi_local_linear_trend_state_space_model(),
sts_smooth_seasonal(),
sts_smooth_seasonal_state_space_model(),
sts_sparse_linear_regression(),
sts_sum()