Like the sts_local_linear_trend model, a semi-local linear trend posits a
latent level and slope, with the level component updated according to
the current slope plus a random walk:
sts_semi_local_linear_trend(
observed_time_series = NULL,
level_scale_prior = NULL,
slope_mean_prior = NULL,
slope_scale_prior = NULL,
autoregressive_coef_prior = NULL,
initial_level_prior = NULL,
initial_slope_prior = NULL,
constrain_ar_coef_stationary = TRUE,
constrain_ar_coef_positive = FALSE,
name = NULL
)an instance of StructuralTimeSeries.
optional float tensor of shape
batch_shape + [T, 1] (omitting the trailing unit dimension is also
supported when T > 1), specifying an observed time series.
Any priors not explicitly set will be given default values according to
the scale of the observed time series (or batch of time series). May
optionally be an instance of sts_masked_time_series, which includes
a mask tensor to specify timesteps with missing observations.
Default value: NULL.
optional tfp$distribution instance specifying a prior
on the level_scale parameter. If NULL, a heuristic default prior is
constructed based on the provided observed_time_series.
Default value: NULL.
optional tfd$Distribution instance specifying a prior
on the slope_mean parameter. If NULL, a heuristic default prior is
constructed based on the provided observed_time_series. Default value: NULL.
optional tfd$Distribution instance specifying a prior
on the slope_scale parameter. If NULL, a heuristic default prior is
constructed based on the provided observed_time_series. Default value: NULL.
optional tfd$Distribution instance specifying
a prior on the autoregressive_coef parameter. If NULL, the default
prior is a standard Normal(0, 1). Note that the prior may be
implicitly truncated by constrain_ar_coef_stationary and/or constrain_ar_coef_positive.
Default value: NULL.
optional tfp$distribution instance specifying a
prior on the initial level. If NULL, a heuristic default prior is
constructed based on the provided observed_time_series.
Default value: NULL.
optional tfd$Distribution instance specifying a
prior on the initial slope. If NULL, a heuristic default prior is
constructed based on the provided observed_time_series. Default value: NULL.
if TRUE, perform inference using a
parameterization that restricts autoregressive_coef to the interval
(-1, 1), or (0, 1) if force_positive_ar_coef is also TRUE,
corresponding to stationary processes. This will implicitly truncate
the support of autoregressive_coef_prior. Default value: TRUE.
if TRUE, perform inference using a
parameterization that restricts autoregressive_coef to be positive,
or in (0, 1) if constrain_ar_coef_stationary is also TRUE. This
will implicitly truncate the support of autoregressive_coef_prior.
Default value: FALSE.
the name of this model component. Default value: 'SemiLocalLinearTrend'.
level[t] = level[t-1] + slope[t-1] + Normal(0., level_scale)
The slope component in a sts_semi_local_linear_trend model evolves according to
a first-order autoregressive (AR1) process with potentially nonzero mean:
slope[t] = (slope_mean + autoregressive_coef * (slope[t-1] - slope_mean) + Normal(0., slope_scale))
Unlike the random walk used in LocalLinearTrend, a stationary
AR1 process (coefficient in (-1, 1)) maintains bounded variance over time,
so a SemiLocalLinearTrend model will often produce more reasonable
uncertainties when forecasting over long timescales.
For usage examples see sts_fit_with_hmc(), sts_forecast(), sts_decompose_by_component().
Other sts:
sts_additive_state_space_model(),
sts_autoregressive(),
sts_autoregressive_state_space_model(),
sts_constrained_seasonal_state_space_model(),
sts_dynamic_linear_regression(),
sts_dynamic_linear_regression_state_space_model(),
sts_linear_regression(),
sts_local_level(),
sts_local_level_state_space_model(),
sts_local_linear_trend(),
sts_local_linear_trend_state_space_model(),
sts_seasonal(),
sts_seasonal_state_space_model(),
sts_semi_local_linear_trend_state_space_model(),
sts_smooth_seasonal(),
sts_smooth_seasonal_state_space_model(),
sts_sparse_linear_regression(),
sts_sum()