Y = ceiling(X)Definition in Terms of Sampling
tfd_quantized(
distribution,
low = NULL,
high = NULL,
validate_args = FALSE,
name = "QuantizedDistribution"
)a distribution instance.
The base distribution class to transform. Typically an
instance of Distribution.
Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default NULL.
If provided, base distribution's prob should be defined at low.
Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default NULL.
If provided, base distribution's prob should be defined at high - 1.
high must be strictly greater than low.
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE.
name prefixed to Ops created by this class.
1. Draw X
2. Set Y <-- ceiling(X)
3. If Y < low, reset Y <-- low
4. If Y > high, reset Y <-- high
5. Return Y
Definition in Terms of the Probability Mass Function
Given scalar random variable X, we define a discrete random variable Y
supported on the integers as follows:
P[Y = j] := P[X <= low], if j == low,
:= P[X > high - 1], j == high,
:= 0, if j < low or j > high,
:= P[j - 1 < X <= j], all other j.
Conceptually, without cutoffs, the quantization process partitions the real
line R into half open intervals, and identifies an integer j with the
right endpoints:
R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ...
j = ... -1 0 1 2 3 4 ...
P[Y = j] is the mass of X within the jth interval.
If low = 0, and high = 2, then the intervals are redrawn
and j is re-assigned:
R = (-infty, 0](0, 1](1, infty)
j = 0 1 2
P[Y = j] is still the mass of X within the jth interval.
@section References:
For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().
Other distributions:
tfd_autoregressive(),
tfd_batch_reshape(),
tfd_bates(),
tfd_bernoulli(),
tfd_beta(),
tfd_beta_binomial(),
tfd_binomial(),
tfd_categorical(),
tfd_cauchy(),
tfd_chi(),
tfd_chi2(),
tfd_cholesky_lkj(),
tfd_continuous_bernoulli(),
tfd_deterministic(),
tfd_dirichlet(),
tfd_dirichlet_multinomial(),
tfd_empirical(),
tfd_exp_gamma(),
tfd_exp_inverse_gamma(),
tfd_exponential(),
tfd_gamma(),
tfd_gamma_gamma(),
tfd_gaussian_process(),
tfd_gaussian_process_regression_model(),
tfd_generalized_normal(),
tfd_geometric(),
tfd_gumbel(),
tfd_half_cauchy(),
tfd_half_normal(),
tfd_hidden_markov_model(),
tfd_horseshoe(),
tfd_independent(),
tfd_inverse_gamma(),
tfd_inverse_gaussian(),
tfd_johnson_s_u(),
tfd_joint_distribution_named(),
tfd_joint_distribution_named_auto_batched(),
tfd_joint_distribution_sequential(),
tfd_joint_distribution_sequential_auto_batched(),
tfd_kumaraswamy(),
tfd_laplace(),
tfd_linear_gaussian_state_space_model(),
tfd_lkj(),
tfd_log_logistic(),
tfd_log_normal(),
tfd_logistic(),
tfd_mixture(),
tfd_mixture_same_family(),
tfd_multinomial(),
tfd_multivariate_normal_diag(),
tfd_multivariate_normal_diag_plus_low_rank(),
tfd_multivariate_normal_full_covariance(),
tfd_multivariate_normal_linear_operator(),
tfd_multivariate_normal_tri_l(),
tfd_multivariate_student_t_linear_operator(),
tfd_negative_binomial(),
tfd_normal(),
tfd_one_hot_categorical(),
tfd_pareto(),
tfd_pixel_cnn(),
tfd_poisson(),
tfd_poisson_log_normal_quadrature_compound(),
tfd_power_spherical(),
tfd_probit_bernoulli(),
tfd_relaxed_bernoulli(),
tfd_relaxed_one_hot_categorical(),
tfd_sample_distribution(),
tfd_sinh_arcsinh(),
tfd_skellam(),
tfd_spherical_uniform(),
tfd_student_t(),
tfd_student_t_process(),
tfd_transformed_distribution(),
tfd_triangular(),
tfd_truncated_cauchy(),
tfd_truncated_normal(),
tfd_uniform(),
tfd_variational_gaussian_process(),
tfd_vector_diffeomixture(),
tfd_vector_exponential_diag(),
tfd_vector_exponential_linear_operator(),
tfd_vector_laplace_diag(),
tfd_vector_laplace_linear_operator(),
tfd_vector_sinh_arcsinh_diag(),
tfd_von_mises(),
tfd_von_mises_fisher(),
tfd_weibull(),
tfd_wishart(),
tfd_wishart_linear_operator(),
tfd_wishart_tri_l(),
tfd_zipf()