Learn R Programming

tggd (version 0.1.3)

tggd_log: The Truncated Generalised Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Truncated Generalised Gamma Distribution in log base 10 (log10) space. Specifically, if 10^x is drawn from a TGGD distribution (in real space), these functions give the distribution of x, using the same parameter values.

Usage

dtggd_log(x, scale=14, a=-1, b=1, xmin=10, log = FALSE)
ptggd_log(q, scale=14, a=-1, b=1, xmin=10, lower.tail = TRUE, log.p = FALSE)
qtggd_log(p, scale=14, a=-1, b=1, xmin=10, lower.tail = TRUE, log.p = FALSE,
res.approx=1e-2)
rtggd_log(n, scale=14, a=-1, b=1, xmin=10, res.approx=1e-2)
tggd_mode_log(scale=14, a=-1, b=1, xmin=10)

Value

dtggd_log gives the density, ptggd_log gives the distribution function, qtggd_log gives the quantile function, and rtggd_log generates random deviates. tggd_mode_log gives the location of the distribution mode.

Invalid arguments will result in return value NaN, with a warning.

The length of the result is determined by n for rtggd_log, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

Arguments

x,q

Vector of quantiles.

p

Vector of probabilities.

n

Number of observations. If length(n) > 1, the length is taken to be the number required.

scale

Vector of values for scale, which controls the transition regime between the power law slope and the exponential cut-off of the TGGD. This is analogous to the scale parameter for the standard Gamma distribution (see GammaDist).

a

Vector of values for a, which controls the power law slope of the TGGD.

b

Vector of values for b, which controls the exponential cutoff of the TGGD.

xmin

Vector of values for xmin, which controls the lower limit at which to trancate the TGGD.

res.approx

The resolution used to create the inverted CDF required to map probability integrals back onto quantiles.

log, log.p

Logical; if TRUE, probabilities/densities p are returned as log(p).

lower.tail

Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

Author

Aaron Robotham, Steven Murray

Details

This distribution function is described in detail in Murray, Robotham and Power 2016. The PDF is given by:

$$f(x;a,b,s,m) = \frac{\ln(10).b (10^{(x-s)})^{(a+1)} \exp(-10^{(b(x-s))})}{s \Gamma(\frac{a+1}{b},(10^{(m-s)})^b)}$$

where, from the argument list above, we use x=x, a=a, b=b, s=scale and m=xmin. \(\Gamma\) is the upper incomplete Gamma function as defined by the gsl gamma_inc function, using the same argument ordering, where gamma_inc(a,x)==pgamma(x,a,lower=FALSE)*gamma(x) for a>0. gamma_inc is used because it allows for the computation of upper incomplete integrals in cases where a<=0.

References

Murray, Robotham and Power (2016) Baldry et al, 2012, MNRAS, 421, 621

See Also

GammaDist regarding the Gamma distribution. RNG about random number generation in R. Distributions for other standard distributions.

Examples

Run this code
r <- rtggd_log(100,a=-2)
hist(r)

##Ideally the output below should equal 0, in practice it will be very close:
qtggd_log(ptggd_log(r))-r

#These should be the same:
integrate(dtggd_log,lower=10,upper=11,a=-1.5,b=0.7,xmin=10)
ptggd_log(11,a=-1.5,b=0.7,xmin=10)

#This should be very close to 1 (for a true PDF):
ptggd_log(18,a=-1.5,b=0.7,xmin=10)

#To show the link to the linear and ln variants (and the slight inaccuracies) these
#outputs should be a sequence from 0 to 1 (by=0.1):
ptggd_ln(log(qtggd(seq(0,1,by=0.1))))
ptggd_ln(qtggd_log(seq(0,1,by=0.1))*log(10))

#Here we make a double Schechter galaxy stellar mass function down to a target stellar
#mass (xmin) of log10(SM)=8.

#Using data from Baldry (2012):
#Mixture 1 has M* (scale)=10.66, a=-1.47, b=1, phi*=0.79e-3
#Mixture 2 has M* (scale)=10.66, a=-0.35, b=1, phi*=3.96e-3

#phi* is defined such that: dtggd_log(M*,M*,a,b,xmin)=phi*.log(10).exp(-1)
#for any a, b and xmin.

#We want to fit for the ratio of phi*: 0.79/3.96=0.2

#Relatively speaking, we can define new scaling values for sampling with:
M1norm=0.2/dtggd_log(10.66,10.66,-1.47,1,xmin=8)
M2norm=1/dtggd_log(10.66,10.66,-0.35,1,xmin=8)
Mtot=M1norm+M2norm
#Say we want to sample 1e5 galaxies, we can then do:
Nsamp=1e5
set.seed(100)
GalSample=c(rtggd_log(Nsamp*M1norm/Mtot,10.66,-1.47,1,xmin=8),
rtggd_log(Nsamp*M2norm/Mtot,10.66,-0.35,1,xmin=8))
temp=hist(GalSample,breaks=seq(8,12,by=0.1), plot=FALSE)
#We can then make a plot to compare to Fig 13 of Baldry (2012)
#(the lines are approximate, using trapazoid integration for the bins):
plot(temp$mids,temp$counts,log='y')
lines(seq(8,12,by=0.01), dtggd_log(seq(8,12,by=0.01),10.66,-1.47,1,xmin=8)*
Nsamp*M1norm/Mtot/10,col='blue')
lines(seq(8,12,by=0.01), dtggd_log(seq(8,12,by=0.01),10.66,-0.35,1,xmin=8)*
Nsamp*M2norm/Mtot/10,col='red')
lines(seq(8,12,by=0.01), dtggd_log(seq(8,12,by=0.01),10.66,-1.47,1,xmin=8)*
Nsamp*M1norm/Mtot/10 + dtggd_log(seq(8,12,by=0.01),10.66,-0.35,1,xmin=8)*
Nsamp*M2norm/Mtot/10,col='black')

if (FALSE) {
#Now we can try to fit the mixed model. The trick here is we fit for the mixture using
#an additional parameter, where one component is multiplied by par[4] and the other
#1-par[4]. We define it so M1norm/Mtot=par[4] and M1norm/Mtot=1-par[4].

mixlike=function(par,data){
return(-sum(log(
dtggd_log(data,par[1],par[2],1,8)*par[4]+     #Contribution of mix 1 to the likelihood
dtggd_log(data,par[1],par[3],1,8)*(1-par[4])  #Contribution of mix 2 to the likelihood
)))
}
GSMFfit=optim(par=c(10,-2,0,0.5), fn=mixlike, data=GalSample, hessian=TRUE)
#The fit is probably not fantastic though. Generalised Gamma distributions (including
#truncated ones) display poor convergence properties using ML. Full MCMC is a better
#route when trying to fit GSMF type data. And the data certainly should *not* be binned!

#The maximum likelihood parameters:
GSMFfit$par
#The marginal errors using the diagonal of the inverse hessian:
sqrt(diag(solve(GSMFfit$hessian)))

#The M1norm/Mtot mixture output is ~0.8.
#To get back to original ratio of phi1*/phi2* (~0.2):

(GSMFfit$par[4]*dtggd_log(10.66,10.66,-1.47,1,xmin=8))/
((1-GSMFfit$par[4])*dtggd_log(10.66,10.66,-0.35,1,xmin=8))

#In general the final phi* will still need a further global normalisation, e.g.
#to count within a set window of stellar mass and volume (redshift and sky area).
}

Run the code above in your browser using DataLab