tgp (version 2.4-17)

default.itemps: Default Sigmoidal, Harmonic and Geometric Temperature Ladders

Description

Parameterized by the minimum desired inverse temperature, this function generates a ladder of inverse temperatures k[1:m] starting at k[1] = 1, with m steps down to the final temperature k[m] = k.min progressing sigmoidally, harmonically or geometrically. The output is in a format convenient for the b* functions in the tgp package (e.g. btgp), including stochastic approximation parameters \(c_0\) and \(n_0\) for tuning the uniform pseudo-prior output by this function

Usage

default.itemps(m = 40, type = c("geometric", "harmonic","sigmoidal"),
               k.min = 0.1, c0n0 = c(100, 1000), lambda = c("opt",
               "naive", "st"))

Arguments

m

Number of temperatures in the ladder; m=1 corresponds to importance sampling at the temperature specified by k.min (in this case all other arguments are ignored)

type

Choose from amongst two common defaults for simulated tempering and Metropolis-coupled MCMC, i.e., geometric (default) or harmonic, or a sigmoidal ladder (default) that concentrates more inverse temperatures near 1

k.min

Minimum inverse temperature desired

c0n0

Stochastic approximation parameters used to tune the simulated tempering pseudo-prior ($pk) to get a uniform posterior over the inverse temperatures; must be a 2-vector of positive integers c(c0, n0); see the Geyer \& Thompson reference below

lambda

Method for combining the importance samplers at each temperature. Optimal combination ("opt") is the default, weighting the IS at each temperature \(k\) by $$\lambda_k \propto (\sum_i w_{ki})^2/\sum_i w_{ki}^2.$$ Setting lambda = "naive" allows each temperature to contribute equally (\(\lambda_k \propto 1\), or equivalently ignores delineations due to temperature when using importance weights. Setting lambda = "st" allows only the first (cold) temperature to contribute to the estimator, thereby implementing simulated tempering

Value

The return value is a list which is compatible with the input argument itemps to the b* functions (e.g. btgp), containing the following entries:

c0n0

A copy of the c0n0 input argument

k

The generated inverse temperature ladder; a vector with length(k) = m containing a decreasing sequence from 1 down to k.min

pk

A vector with length(pk) = m containing an initial pseudo-prior for the temperature ladder of 1/m for each inverse temperature

lambda

IT method, as specified by the input argument

Details

The geometric and harmonic inverse temperature ladders are usually defined by an index \(i=1,\dots,m\) and a parameter \(\Delta_k > 0\). The geometric ladder is defined by $$k_i = (1+\Delta_k)^{1-i},$$ and the harmonic ladder by $$k_i = (1+\Delta_k(i-1))^{-1}.$$ Alternatively, specifying the minimum temperature \(k_{\mbox{\tiny min}}\) in the ladder can be used to uniquely determine \(\Delta_k\). E.g., for the geometric ladder $$\Delta_k = k_{\mbox{\tiny min}}^{1/(1-m)}-1,$$ and for the harmonic $$\Delta_k = \frac{k_{\mbox{\tiny min}}^{-1}-1}{m-1}.$$ In a similar spirit, the sigmoidal ladder is specified by first situating \(m\) indices \(j_i\in \Re\) so that \(k_1 = k(j_1) = 1\) and \(k_m = k(j_m) = k_{\mbox{\tiny min}}\) under $$k(j_i) = 1.01 - \frac{1}{1+e^{j_i}}.$$ The remaining \(j_i, i=2,\dots,(m-1)\) are spaced evenly between \(j_1\) and \(j_m\) to fill out the ladder \(k_i = k(j_i), i=1,\dots,(m-1)\).

For more details, see the Importance tempering paper cited below and a full demonstration in vignette("tgp2")

References

Gramacy, R.B., Samworth, R.J., and King, R. (2010) Importance Tempering. ArXiV article 0707.4242 Statistics and Computing, 20(1), pp. 1-7; https://arxiv.org/abs/0707.4242.

For stochastic approximation and simulated tempering (ST):

Geyer, C.~and Thompson, E.~(1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. Journal of the American Statistical Association, 90, 909--920.

For the geometric temperature ladder:

Neal, R.M.~(2001) Annealed importance sampling. Statistics and Computing, 11, 125--129

Justifying geometric and harmonic defaults:

Liu, J.S.~(1002) Monte Carlo Strategies in Scientific Computing. New York: Springer. Chapter 10 (pages 213 \& 233)

https://bobby.gramacy.com/r_packages/tgp/

See Also

btgp

Examples

Run this code
# NOT RUN {
## comparing the different ladders
geo <- default.itemps(type="geometric")
har <- default.itemps(type="harmonic")
sig <- default.itemps(type="sigmoidal")
par(mfrow=c(2,1))
matplot(cbind(geo$k, har$k, sig$k), pch=21:23,
        main="inv-temp ladders", xlab="indx",
        ylab="itemp")
legend("topright", pch=21:23, 
       c("geometric","harmonic","sigmoidal"), col=1:3)
matplot(log(cbind(sig$k, geo$k, har$k)), pch=21:23,
        main="log(inv-temp) ladders", xlab="indx",
        ylab="itemp")

# }
# NOT RUN {
## using Importance Tempering (IT) to improve mixing
## on the motorcycle accident dataset
library(MASS)
out.it <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,22000,2),
        R=3, itemps=default.itemps(), bprior="b0", trace=TRUE, 
        pred.n=FALSE)

## compare to regular tgp w/o IT
out.reg <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,22000,2),
        R=3, bprior="b0", trace=TRUE, pred.n=FALSE)

## compare the heights explored by the three chains:
## REG, combining all temperatures, and IT
p <- out.it$trace$post
L <- length(p$height)
hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE))
b <- hist2bar(cbind(out.reg$trace$post$height, p$height, hw))
par(mfrow=c(1,1))
barplot(b, beside=TRUE, xlab="tree height", ylab="counts", col=1:3,
        main="tree heights encountered")
legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3)
# }

Run the code above in your browser using DataLab