Learn R Programming

thisutils

Introduction

thisutils is an R package for collecting some useful functions.

Installation

Install CRAN version:

install.packages("thisutils")
# or
if (!require("pak", quietly = TRUE)) {
  install.packages("pak")
}
pak::pak("thisutils")

Install development version from GitHub use pak:

if (!require("pak", quietly = TRUE)) {
  install.packages("pak")
}
pak::pak("mengxu98/thisutils")

Usage

Please reference here.

Copy Link

Version

Install

install.packages('thisutils')

Monthly Downloads

954

Version

0.3.1

License

MIT + file LICENSE

Maintainer

Meng Xu

Last Published

November 17th, 2025

Functions in thisutils (0.3.1)

download

Download file from the Internet
%ss%

Value selection operator
figlet

The figlet function
invoke_fun

Invoke a function with a list of arguments
parse_inline_expressions

Parse inline expressions
pearson_correlation

Correlation and covariance calculation for sparse matrix
print.thisutils_logo

Print logo
sparse_cor

Sparse correlation function
maximump

Maximum P-value
simulate_sparse_matrix

Generate a simulated sparse matrix
meanp

Mean P-value
unnest_fun

Unnest a list-column
log_message

Print formatted message
matrix_process

Process matrix
r_square

Coefficient of determination (\(R^2\))
remove_space

Remove and normalize spaces
votep

Vote P-value
matrix_to_table

Switch matrix to table
max_depth

Maximum depth of a list
split_indices

Split indices.
sump

Sum P-value
table_to_matrix

Switch table to matrix
thisutils_logo

The logo of thisutils
try_get

Try to evaluate an expression a set number of times before failing
wilkinsonp

Wilkinson's P-value
thisutils-package

Collection of Utility Functions for Data Analysis and Computing
capitalize

Capitalize the first letter of each word
figlet_font

Get a figlet font
as_matrix

Convert matrix into dense/sparse matrix
get_verbose

Get the verbose option
add_pkg_file

Add package file
check_sparsity

Check sparsity of matrix
parallelize_fun

Parallelize a function
minimump

Minimum P-value
normalization

Normalize numeric vector