tidyBF
: Tidy Wrapper for BayesFactor
Package
Package | Status | Usage | GitHub | References |
---|---|---|---|---|
Overview
tidyBF
package is a tidy wrapper around the BayesFactor
package that
always expects the data to be in the tidy format and return a tibble
containing Bayes Factor values. Additionally, it provides a more
consistent syntax and by default returns a dataframe with rich details.
These functions can also return expressions containing results from
Bayes Factor tests that can then be displayed in custom plots.
Installation
To get the latest, stable CRAN
release:
install.packages("tidyBF")
You can get the development version of the package from GitHub
. To
see what new changes (and bug fixes) have been made to the package since
the last release on CRAN
, you can check the detailed log of changes
here: https://indrajeetpatil.github.io/tidyBF/news/index.html
If you are in hurry and want to reduce the time of installation, prefer-
# needed package to download from GitHub repo
install.packages("remotes")
remotes::install_github(
repo = "IndrajeetPatil/tidyBF", # package path on GitHub
quick = TRUE # skips docs, demos, and vignettes
)
If time is not a constraint-
remotes::install_github(
repo = "IndrajeetPatil/tidyBF", # package path on GitHub
dependencies = TRUE, # installs packages which `tidyBF` depends on
upgrade_dependencies = TRUE # updates any out of date dependencies
)
Citation
This package is one component of the
ggstatsplot
package.
If you want to cite this package in a scientific journal or in any other
context, run the following code in your R
console:
citation("tidyBF")
#>
#> Patil, I. (2018). ggstatsplot: 'ggplot2' Based Plots with Statistical
#> Details. CRAN. Retrieved from
#> https://cran.r-project.org/web/packages/ggstatsplot/index.html
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Article{,
#> title = {{ggstatsplot}: 'ggplot2' Based Plots with Statistical Details},
#> author = {Indrajeet Patil},
#> year = {2018},
#> journal = {CRAN},
#> url = {https://CRAN.R-project.org/package=ggstatsplot},
#> doi = {10.5281/zenodo.2074621},
#> }
Summary of available tests
Behind the curtains, tidyBF
provides an easier syntax to marry
functionalities provided by the following two packages in a unified
framework:
BayesFactor
: for hypothesis testingbayestestR
: for posterior estimation
Analysis | Function | Hypothesis testing | Estimation | Function |
---|---|---|---|---|
(one/two-sample) t-test | bf_ttest | Yes | Yes | BayesFactor::ttestBF + bayestestR::describe_posterior |
one-way ANOVA | bf_oneway_anova | Yes | Yes | BayesFactor::anovaBF + performance::r2_bayes |
correlation | bf_corr_test | Yes | Yes | BayesFactor::correlationBF + bayestestR::describe_posterior |
(one/two-way) contingency table | bf_contingency_tab | Yes | Yes | BayesFactor::contingencyTableBF + effectsize::effectsize |
random-effects meta-analysis | bf_meta_random | Yes | Yes | metaBMA::meta_random |
Notation
The results are always displayed as a Bayes Factor in favor of the null hypothesis over the alternative hypothesis. Additionally, the values are logged to avoid huge numbers. Therefore, the notation is: .
Also, please note that this makes flipping the evidence easy: = -
Benefits
Below are few concrete examples of where tidyBF
wrapper might provide
a more friendly way to access output from or write functions around
BayesFactor
.
Syntax consistency
BayesFactor
is inconsistent with its formula interface. tidyBF
avoids this as it doesn’t provide the formula interface for any of the
functions.
# setup
set.seed(123)
# with `BayesFactor` ----------------------------------------
suppressPackageStartupMessages(library(BayesFactor))
data(sleep)
# independent t-test: accepts formula interface
ttestBF(formula = wt ~ am, data = mtcars)
#> Bayes factor analysis
#> --------------
#> [1] Alt., r=0.707 : 1383.367 ±0%
#>
#> Against denominator:
#> Null, mu1-mu2 = 0
#> ---
#> Bayes factor type: BFindepSample, JZS
# paired t-test: doesn't accept formula interface
ttestBF(formula = extra ~ group, data = sleep, paired = TRUE)
#> Error in ttestBF(formula = extra ~ group, data = sleep, paired = TRUE): Cannot use 'paired' with formula.
# with `tidyBF` ----------------------------------------
library(tidyBF)
# independent t-test
bf_ttest(data = mtcars, x = am, y = wt)
#> # A tibble: 1 x 13
#> term estimate conf.low conf.high pd rope.percentage
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Difference -1.26 -1.79 -0.722 1 0
#> prior.distribution prior.location prior.scale effect component bf10
#> <chr> <dbl> <dbl> <chr> <chr> <dbl>
#> 1 cauchy 0 0.707 fixed conditional 1383.
#> log_e_bf10
#> <dbl>
#> 1 7.23
# paired t-test
bf_ttest(data = sleep, x = group, y = extra, paired = TRUE, subject.id = ID)
#> # A tibble: 1 x 13
#> term estimate conf.low conf.high pd rope.percentage
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Difference 1.40 0.508 2.31 0.996 0
#> prior.distribution prior.location prior.scale effect component bf10
#> <chr> <dbl> <dbl> <chr> <chr> <dbl>
#> 1 cauchy 0 0.707 fixed conditional 17.3
#> log_e_bf10
#> <dbl>
#> 1 2.85
Expressions for plots
Although all functions default to returning a dataframe, you can also use it to extract expressions that can be displayed in plots.
t-test
# setup
set.seed(123)
library(ggplot2)
# using the expression to display details in a plot
ggplot(ToothGrowth, aes(supp, len)) +
geom_boxplot() + # two-sample t-test results in an expression
labs(subtitle = bf_ttest(ToothGrowth, supp, len, output = "expression"))
anova
# setup
set.seed(123)
library(ggplot2)
library(ggforce)
library(tidyBF)
# plot with subtitle
ggplot(iris, aes(x = Species, y = Sepal.Length)) +
geom_violin() +
geom_sina() +
labs(subtitle = bf_oneway_anova(iris, Species, Sepal.Length, output = "expression"))
correlation test
# setup
set.seed(123)
library(ggplot2)
library(tidyBF)
# using the expression to display details in a plot
ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
geom_smooth(method = "lm") +
labs(subtitle = bf_corr_test(mtcars, wt, mpg, output = "expression"))
#> `geom_smooth()` using formula 'y ~ x'
contingency tabs analysis
# setup
set.seed(123)
library(ggplot2)
library(tidyBF)
# basic pie chart
ggplot(as.data.frame(table(mpg$class)), aes(x = "", y = Freq, fill = factor(Var1))) +
geom_bar(width = 1, stat = "identity") +
theme(axis.line = element_blank()) +
# cleaning up the chart and adding results from one-sample proportion test
coord_polar(theta = "y", start = 0) +
labs(
fill = "Class",
x = NULL,
y = NULL,
title = "Pie Chart of class (type of car)",
subtitle = bf_contingency_tab(as.data.frame(table(mpg$class)), Var1, counts = Freq, output = "h1")
)
meta-analysis
# setup
set.seed(123)
library(metaviz)
library(ggplot2)
# meta-analysis forest plot with results random-effects meta-analysis
viz_forest(
x = mozart[, c("d", "se")],
study_labels = mozart[, "study_name"],
xlab = "Cohen's d",
variant = "thick",
type = "cumulative"
) +
labs(
title = "Meta-analysis of Pietschnig, Voracek, and Formann (2010) on the Mozart effect",
subtitle = bf_meta_random(
data = dplyr::rename(mozart, estimate = d, std.error = se),
output = "expression",
metaBMA.args = list(rscale_discrete = 0.880),
conf.level = 0.99
)
) +
theme(text = element_text(size = 12))
Convenient way to extract detailed output from BayesFactor
objects
The package provides bf_extractor
function to conveniently extract
important details from these objects:
# setup
set.seed(123)
library(tidyBF)
library(BayesFactor)
data(puzzles)
# model
result <-
anovaBF(
RT ~ shape * color + ID,
data = puzzles,
whichRandom = "ID",
whichModels = "top",
progress = FALSE
)
# extract details
bf_extractor(result)
#> # A tibble: 21 x 20
#> term estimate conf.low conf.high pd rope.percentage effect
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 mu 45.0 43.7 46.4 1 0 fixed
#> 2 shape-round 0.429 0.0643 0.801 0.992 0.141 fixed
#> 3 shape-square -0.429 -0.801 -0.0643 0.992 0.141 fixed
#> 4 color-color -0.426 -0.799 -0.0461 0.990 0.162 fixed
#> 5 color-monochromatic 0.426 0.0461 0.799 0.990 0.162 fixed
#> 6 ID-1 2.47 0.783 4.37 0.995 0 random
#> 7 ID-2 0.439 -1.21 2.20 0.698 0.231 random
#> 8 ID-3 0.907 -0.849 2.66 0.848 0.156 random
#> 9 ID-4 0.466 -1.47 2.20 0.704 0.218 random
#> 10 ID-5 3.17 1.38 5.00 0.999 0 random
#> component bf10 log_e_bf10 r2 std.dev ci.width r2.conf.low r2.conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 extra 2.65 0.974 0.732 0.0509 95 0.609 0.812
#> 2 conditional 0.233 -1.45 0.732 0.0509 95 0.609 0.812
#> 3 conditional 0.239 -1.43 0.732 0.0509 95 0.609 0.812
#> 4 conditional 2.65 0.974 0.732 0.0509 95 0.609 0.812
#> 5 conditional 0.233 -1.45 0.732 0.0509 95 0.609 0.812
#> 6 conditional 0.239 -1.43 0.732 0.0509 95 0.609 0.812
#> 7 conditional 2.65 0.974 0.732 0.0509 95 0.609 0.812
#> 8 conditional 0.233 -1.45 0.732 0.0509 95 0.609 0.812
#> 9 conditional 0.239 -1.43 0.732 0.0509 95 0.609 0.812
#> 10 conditional 2.65 0.974 0.732 0.0509 95 0.609 0.812
#> r2.component prior.parameter prior.distribution prior.location prior.scale
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 conditional fixed cauchy 0 0.5
#> 2 conditional fixed cauchy 0 0.5
#> 3 conditional fixed cauchy 0 0.5
#> 4 conditional fixed cauchy 0 0.5
#> 5 conditional fixed cauchy 0 0.5
#> 6 conditional fixed cauchy 0 0.5
#> 7 conditional fixed cauchy 0 0.5
#> 8 conditional fixed cauchy 0 0.5
#> 9 conditional fixed cauchy 0 0.5
#> 10 conditional fixed cauchy 0 0.5
#> # ... with 11 more rows
Acknowledgments
The hexsticker was generously designed by Sarah Otterstetter (Max Planck Institute for Human Development, Berlin).
Code of Conduct
Please note that the tidyBF
project is released with a Contributor
Code of
Conduct.
By contributing to this project, you agree to abide by its terms.