Learn R Programming

tidyHeatmap (version 1.8.1)

split_rows: Split the heatmap row-wise depending on the biggest branches in the cladogram.

Description

split_rows() from a `InputHeatmap` object, split the row cladogram.

split_columns() from a `InputHeatmap` object, split the column cladogram.

Usage

split_rows(.data, number_of_groups)

# S4 method for InputHeatmap split_rows(.data, number_of_groups)

split_columns(.data, number_of_groups)

# S4 method for InputHeatmap split_columns(.data, number_of_groups)

Arguments

.data

A `InputHeatmap`

number_of_groups

An integer. The number of groups to split the cladogram into.

Value

A `InputHeatmap` object that gets evaluated to a `ComplexHeatmap`

A `InputHeatmap` object that gets evaluated to a `ComplexHeatmap`

A `InputHeatmap` object that gets evaluated to a `ComplexHeatmap`

A `InputHeatmap` object that gets evaluated to a `ComplexHeatmap`

Details

maturing

It uses `ComplexHeatmap` as visualisation tool.

maturing

It uses `ComplexHeatmap` as visualisation tool.

Examples

Run this code
# NOT RUN {
library(dplyr)

hm = 
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)

hm %>% split_rows(2)


library(dplyr)

hm = 
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)

hm %>% split_columns(2)

# }

Run the code above in your browser using DataLab