if (FALSE) {
library(ggplot2)
library(dplyr)
library(posterior)
library(brms)
library(modelr)
theme_set(theme_light())
m_mpg = brm(mpg ~ hp * cyl, data = mtcars, family = lognormal(),
# 1 chain / few iterations just so example runs quickly
# do not use in practice
chains = 1, iter = 500)
# Look at mean predictions for some cars (epred) and compare to
# the exponeniated mu parameter of the lognormal distribution (linpred).
# Notice how they are NOT the same. This is because exp(mu) for a
# lognormal distribution is equal to its median, not its mean.
mtcars %>%
select(hp, cyl, mpg) %>%
add_epred_rvars(m_mpg) %>%
add_linpred_rvars(m_mpg, value = "mu") %>%
mutate(expmu = exp(mu), .epred - expmu)
# plot intervals around conditional means (epred_rvars)
mtcars %>%
group_by(cyl) %>%
data_grid(hp = seq_range(hp, n = 101)) %>%
add_epred_rvars(m_mpg) %>%
ggplot(aes(x = hp, color = ordered(cyl), fill = ordered(cyl))) +
stat_lineribbon(aes(dist = .epred), .width = c(.95, .8, .5), alpha = 1/3) +
geom_point(aes(y = mpg), data = mtcars) +
scale_color_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Set2")
# plot posterior predictive intervals (predicted_rvars)
mtcars %>%
group_by(cyl) %>%
data_grid(hp = seq_range(hp, n = 101)) %>%
add_predicted_rvars(m_mpg) %>%
ggplot(aes(x = hp, color = ordered(cyl), fill = ordered(cyl))) +
stat_lineribbon(aes(dist = .prediction), .width = c(.95, .8, .5), alpha = 1/3) +
geom_point(aes(y = mpg), data = mtcars) +
scale_color_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Set2")
}
Run the code above in your browser using DataLab