library(recipes)
library(rsample)
library(workflows)
library(tune)
rec_spec <- recipe(~., data = mtcars) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())
kmeans_spec <- k_means(num_clusters = tune())
wflow <- workflow() %>%
add_recipe(rec_spec) %>%
add_model(kmeans_spec)
grid <- tibble(num_clusters = 1:3)
set.seed(4400)
folds <- vfold_cv(mtcars, v = 2)
res <- tune_cluster(
wflow,
resamples = folds,
grid = grid
)
res
collect_metrics(res)
Run the code above in your browser using DataLab