tidygate: add gate information to your tibble
Please have a look also to - nanny for tidy high-level data analysis and manipulation - tidyHeatmap for producing heatmaps following tidy principles - tidybulk for tidy and modular transcriptomics analyses
Installation
# From Github
devtools::install_github("stemangiola/tidygate")
# From CRAN
install.package("tidygate")
It interactively or programmately labels points within custom gates on
two dimensions, according to tidyverse principles. The information is
added to your tibble. It is based on the package gatepoints
from Wajid
Jawaid.
The main benefits are
- in interactive mode you can draw your gates on extensive ggplot-like scatter plots
- you can draw multiple gates
- you can save your gates and apply the programmatically.
Input (tibble)
dimension1 | dimension2 | annotations |
---|---|---|
chr or fctr | numeric | … |
Interactive gating
The standard way to gate points in a two-dimensional plot is to - Interactively draw an arbitrary number of gates - Click “Finish” button on the top-right corner of the plot
tidygate_gate <-
tidygate_data %>%
mutate( gate = gate_chr( Dim1, Dim2 ) )
tidygate_gate
Output tibble
## # A tibble: 2,240 x 9
## group hierarchy `ct 1` `ct 2` relation cancer_ID Dim1 Dim2 gate
## <chr> <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr>
## 1 adrenal 1 endothel… epitheli… -1 ACC -0.874 -0.239 0
## 2 adrenal 1 endothel… fibrobla… -1 ACC -0.740 0.114 1
## 3 adrenal 1 endothel… immune_c… -1 ACC -0.988 0.118 0
## 4 adrenal 1 epitheli… endothel… 1 ACC 0.851 0.261 0
## 5 adrenal 1 epitheli… fibrobla… 1 ACC 0.839 0.320 0
## 6 adrenal 1 epitheli… immune_c… 1 ACC 0.746 0.337 0
## 7 adrenal 1 fibrobla… endothel… 1 ACC 0.722 -0.0696 0
## 8 adrenal 1 fibrobla… epitheli… -1 ACC -0.849 -0.317 0
## 9 adrenal 1 fibrobla… immune_c… 0.52 ACC -0.776 -0.383 0
## 10 adrenal 1 immune_c… endothel… 1 ACC 0.980 -0.116 0
## # … with 2,230 more rows
Gates are saved in a temporary file for later use
## [[1]]
## x y
## 1 -0.9380459 0.2784375
## 2 -0.9555544 -0.1695209
## 3 -0.3310857 0.2116150
##
## [[2]]
## x y
## 1 0.01324749 0.2165648
## 2 -0.31065917 -0.1026984
## 3 -0.11514794 -0.2982161
## 4 0.48013998 0.1225183
Programmatic gating
We can use previously drawn gates to programmately add the gate column
tidygate_data %>%
mutate( gate = gate_chr(
Dim1, Dim2,
# Pre-defined gates
gate_list = my_gates
))
## # A tibble: 2,240 x 9
## group hierarchy `ct 1` `ct 2` relation cancer_ID Dim1 Dim2 gate
## <chr> <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr>
## 1 adrenal 1 endothel… epitheli… -1 ACC -0.874 -0.239 0
## 2 adrenal 1 endothel… fibrobla… -1 ACC -0.740 0.114 1
## 3 adrenal 1 endothel… immune_c… -1 ACC -0.988 0.118 0
## 4 adrenal 1 epitheli… endothel… 1 ACC 0.851 0.261 0
## 5 adrenal 1 epitheli… fibrobla… 1 ACC 0.839 0.320 0
## 6 adrenal 1 epitheli… immune_c… 1 ACC 0.746 0.337 0
## 7 adrenal 1 fibrobla… endothel… 1 ACC 0.722 -0.0696 0
## 8 adrenal 1 fibrobla… epitheli… -1 ACC -0.849 -0.317 0
## 9 adrenal 1 fibrobla… immune_c… 0.52 ACC -0.776 -0.383 0
## 10 adrenal 1 immune_c… endothel… 1 ACC 0.980 -0.116 0
## # … with 2,230 more rows