# Add p value
study |>
tidyplot(x = dose, y = score, color = group) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_pvalue()
# Add asterisks
study |>
tidyplot(x = dose, y = score, color = group) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_asterisks()
# Change stat method
study |>
tidyplot(x = dose, y = score, color = group) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_pvalue(method = "wilcoxon")
# Change p.adjust method
study |>
tidyplot(x = dose, y = score, color = group) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_pvalue(p.adjust.method = "bonferroni")
# Define reference group to test against
study |>
tidyplot(x = treatment, y = score, color = treatment) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_asterisks(ref.group = 1)
# Define selected comparisons
study |>
tidyplot(x = treatment, y = score, color = treatment) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_pvalue(comparisons = list(c(1,3),c(2,4)))
# Paired analysis
x <- c(2.3, 4.5, 6.3, 3.4, 7.8, 6.7)
df <- data.frame(
x = c(x, x + c(0.8, 0.75)),
group = paste0("g", rep(c(1, 2), each = 6)),
batch = paste0("b", c(1:6, 1:6)),
shuffle = paste0("c", c(1:6, 6:1))
)
df |>
tidyplot(group, x, color = group) |>
add_boxplot() |>
add_data_points() |>
add_test_pvalue(paired_by = shuffle) |>
add_line(group = shuffle, color = "black")
df |>
tidyplot(group, x, color = group) |>
add_boxplot() |>
add_data_points() |>
add_test_pvalue(paired_by = batch) |>
add_line(group = batch, color = "black")
# hide non-significant p values
gene_expression |>
# filter to one gene
dplyr::filter(external_gene_name == "Apol6") |>
# start plotting
tidyplot(x = condition, y = expression, color = sample_type) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_pvalue(hide.ns = TRUE)
# Flip plot
study |>
tidyplot(x = treatment, y = score, color = treatment) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_asterisks(comparisons = list(c(1,4),c(2,3))) |>
flip_plot()
# Adjust top padding for statistical comparisons
study |>
tidyplot(x = treatment, y = score, color = treatment) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_pvalue(padding_top = 0.08)
# Hide stats information
study |>
tidyplot(x = dose, y = score, color = group) |>
add_mean_dash() |>
add_sem_errorbar() |>
add_data_points() |>
add_test_pvalue(hide_info = TRUE)
Run the code above in your browser using DataLab