Tidyverse selections implement a dialect of R where operators make it easy to select variables:
:
for selecting a range of consecutive variables.
!
for taking the complement of a set of variables.
&
and |
for selecting the intersection or the union of two
sets of variables.
c()
for combining selections.
In addition, you can use selection helpers. Some helpers select specific columns:
everything()
: Matches all variables.
last_col()
: Select last variable, possibly with an offset.
These helpers select variables by matching patterns in their names:
starts_with()
: Starts with a prefix.
ends_with()
: Ends with a suffix.
contains()
: Contains a literal string.
matches()
: Matches a regular expression.
num_range()
: Matches a numerical range like x01, x02, x03.
These helpers select variables from a character vector:
all_of()
: Matches variable names in a character vector. All
names must be present, otherwise an out-of-bounds error is
thrown.
any_of()
: Same as all_of()
, except that no error is thrown
for names that don't exist.
This helper selects variables with a function:
where()
: Applies a function to all variables and selects those
for which the function returns TRUE
.
Here we show the usage for the basic selection operators. See the
specific help pages to learn about helpers like starts_with()
.
The selection language can be used in functions like
dplyr::select()
or tidyr::pivot_longer()
. Let's first attach
the tidyverse:
library(tidyverse)# For better printing
iris <- as_tibble(iris)
Select variables by name:
starwars %>% select(height)
#> # A tibble: 87 x 1
#> height
#> <int>
#> 1 172
#> 2 167
#> 3 96
#> 4 202
#> # ... with 83 more rowsiris %>% pivot_longer(Sepal.Length)
#> # A tibble: 150 x 6
#> Sepal.Width Petal.Length Petal.Width Species name value
#> <dbl> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 1.4 0.2 setosa Sepal.Length 5.1
#> 2 3 1.4 0.2 setosa Sepal.Length 4.9
#> 3 3.2 1.3 0.2 setosa Sepal.Length 4.7
#> 4 3.1 1.5 0.2 setosa Sepal.Length 4.6
#> # ... with 146 more rows
Select multiple variables by separating them with commas. Note how the order of columns is determined by the order of inputs:
starwars %>% select(homeworld, height, mass)
#> # A tibble: 87 x 3
#> homeworld height mass
#> <chr> <int> <dbl>
#> 1 Tatooine 172 77
#> 2 Tatooine 167 75
#> 3 Naboo 96 32
#> 4 Tatooine 202 136
#> # ... with 83 more rows
Functions like tidyr::pivot_longer()
don't take variables with
dots. In this case use c()
to select multiple variables:
iris %>% pivot_longer(c(Sepal.Length, Petal.Length))
#> # A tibble: 300 x 5
#> Sepal.Width Petal.Width Species name value
#> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 0.2 setosa Sepal.Length 5.1
#> 2 3.5 0.2 setosa Petal.Length 1.4
#> 3 3 0.2 setosa Sepal.Length 4.9
#> 4 3 0.2 setosa Petal.Length 1.4
#> # ... with 296 more rows
The :
operator selects a range of consecutive variables:
starwars %>% select(name:mass)
#> # A tibble: 87 x 3
#> name height mass
#> <chr> <int> <dbl>
#> 1 Luke Skywalker 172 77
#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136
#> # ... with 83 more rows
The !
operator negates a selection:
starwars %>% select(!(name:mass))
#> # A tibble: 87 x 11
#> hair_color skin_color eye_color birth_year sex gender homeworld species
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 blond fair blue 19 male masculine Tatooine Human
#> 2 <NA> gold yellow 112 none masculine Tatooine Droid
#> 3 <NA> white, blue red 33 none masculine Naboo Droid
#> 4 none white yellow 41.9 male masculine Tatooine Human
#> # ... with 83 more rows, and 3 more variables: films <list>, vehicles <list>,
#> # starships <list>iris %>% select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3
#> Sepal.Width Petal.Width Species
#> <dbl> <dbl> <fct>
#> 1 3.5 0.2 setosa
#> 2 3 0.2 setosa
#> 3 3.2 0.2 setosa
#> 4 3.1 0.2 setosa
#> # ... with 146 more rows
iris %>% select(!ends_with("Width"))
#> # A tibble: 150 x 3
#> Sepal.Length Petal.Length Species
#> <dbl> <dbl> <fct>
#> 1 5.1 1.4 setosa
#> 2 4.9 1.4 setosa
#> 3 4.7 1.3 setosa
#> 4 4.6 1.5 setosa
#> # ... with 146 more rows
&
and |
take the intersection or the union of two selections:
iris %>% select(starts_with("Petal") & ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Width
#> <dbl>
#> 1 0.2
#> 2 0.2
#> 3 0.2
#> 4 0.2
#> # ... with 146 more rowsiris %>% select(starts_with("Petal") | ends_with("Width"))
#> # A tibble: 150 x 3
#> Petal.Length Petal.Width Sepal.Width
#> <dbl> <dbl> <dbl>
#> 1 1.4 0.2 3.5
#> 2 1.4 0.2 3
#> 3 1.3 0.2 3.2
#> 4 1.5 0.2 3.1
#> # ... with 146 more rows
To take the difference between two selections, combine the &
and
!
operators:
iris %>% select(starts_with("Petal") & !ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Length
#> <dbl>
#> 1 1.4
#> 2 1.4
#> 3 1.3
#> 4 1.5
#> # ... with 146 more rows
The order of selected columns is determined by the inputs.
all_of(c("foo", "bar"))
selects "foo"
first.
c(starts_with("c"), starts_with("d"))
selects all columns
starting with "c"
first, then all columns starting with "d"
.