Learn R Programming

tidystats (version 0.5)

tidy_stats: Tidy the output of a statistics object

Description

tidy_stats is used to convert the output of a statistical object to a list of organized statistics. The tidy_stats function is automatically run when add_stats is used, so there is generally no need to use this function explicitly. It can be used, however, to peek at how the output of a specific analysis will be organized.

Usage

tidy_stats(x)

# S3 method for htest tidy_stats(x)

# S3 method for lm tidy_stats(x)

# S3 method for glm tidy_stats(x)

# S3 method for anova tidy_stats(x)

# S3 method for aov tidy_stats(x)

# S3 method for aovlist tidy_stats(x)

# S3 method for tidystats_descriptives tidy_stats(x)

# S3 method for tidystats_counts tidy_stats(x)

# S3 method for lmerMod tidy_stats(x)

# S3 method for lmerModLmerTest tidy_stats(x)

# S3 method for BFBayesFactor tidy_stats(x)

# S3 method for afex_aov tidy_stats(x)

Arguments

x

The output of a statistical test.

Methods (by class)

  • htest: tidy_stats method for class 'htest'

  • lm: tidy_stats method for class 'lm'

  • glm: tidy_stats method for class 'glm'

  • anova: tidy_stats method for class 'anova'

  • aov: tidy_stats method for class 'aov'

  • aovlist: tidy_stats method for class 'aovlist'

  • tidystats_descriptives: tidy_stats method for class 'tidystats_descriptives'

  • tidystats_counts: tidy_stats method for class 'tidystats_counts'

  • lmerMod: tidy_stats method for class 'lmerMod'

  • lmerModLmerTest: tidy_stats method for class 'lmerModLmerTest'

  • BFBayesFactor: tidy_stats method for class 'BayesFactor'

  • afex_aov: tidy_stats method for class 'afex_aov'

Details

Please note that not all statistical tests are supported. See 'Details' below for a list of supported statistical tests.

Currently supported functions:

stats:

  • t.test()

  • cor.test()

  • chisq.test()

  • wilcox.test()

  • fisher.test()

  • oneway.test()

  • lm()

  • glm()

  • aov()

  • anova()

lme4/lmerTest:

  • lmer()

BayesFactor:

  • generalTestBF()

  • lmBF()

  • regressionBF()

  • ttestBF()

  • anovaBF()

  • correlationBF()

  • contingencyTableBF()

  • proportionBF()

  • meta.ttestBF()

tidystats:

  • describe_data()

  • count_data()

Examples

Run this code
# NOT RUN {
# Conduct statistical tests
# t-test:
sleep_test <- t.test(extra ~ group, data = sleep, paired = TRUE)

# lm:
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm_D9 <- lm(weight ~ group)

# ANOVA:
npk_aov <- aov(yield ~ block + N*P*K, npk)

# Tidy the statistics and store each analysis in a separate variable
list_sleep_test <- tidy_stats(sleep_test)
list_lm_D9 <- tidy_stats(lm_D9)
list_npk_aov <- tidy_stats(npk_aov)

# Now you can inspect each of these variables, e.g.,:
names(list_sleep_test)
str(list_sleep_test)

# }

Run the code above in your browser using DataLab