# construct_models() can create a sequence of models using a fully-default
# approach, a hybrid approach, or a fully-customized approach. All approaches
# require a roadmap and model objects.
rm <- roadmap(
conf_data = acs_conf_nw,
start_data = acs_start_nw
)
rpart_mod_reg <- parsnip::decision_tree() |>
parsnip::set_engine(engine = "rpart") |>
parsnip::set_mode(mode = "regression")
rpart_mod_class <- parsnip::decision_tree() |>
parsnip::set_engine(engine = "rpart") |>
parsnip::set_mode(mode = "classification")
lm_mod <- parsnip::linear_reg() |>
parsnip::set_engine("lm") |>
parsnip::set_mode(mode = "regression")
# Fully-default approach
construct_models(
roadmap = rm,
default_regression_model = lm_mod,
default_classification_model = rpart_mod_class
)
# Hybrid approach
construct_models(
roadmap = rm,
default_regression_model = lm_mod,
default_classification_model = rpart_mod_class,
custom_models = list(
list(vars = "age", model = lm_mod)
)
)
# Fully-customized approach
construct_models(
roadmap = rm,
custom_models = list(
list(vars = c("hcovany", "empstat", "classwkr"), model = rpart_mod_class),
list(vars = c("age", "famsize", "transit_time", "inctot"), model = rpart_mod_reg)
)
)
Run the code above in your browser using DataLab